
GnuPG memory forensics

Nils Amiet and Sylvain Pelissier
nils.amiet@kudelskisecurity.com

sylvain.pelissier@kudelskisecurity.com

Kudelski Security

Abstract. After nearly 25 years of existence, GnuPG (GPG) is still a
widely used solution for message encryption. GPG works with an agent
(gpg-agent) containing multiple functions, including caching passphrases
and encryption keys. First, this work highlights a bug of libgcrypt memory
cleaning which allows reading 8 bytes of the passphrase in the clear from
a memory dump. Second, it further demonstrates general techniques to
retrieve passphrases and encryption keys from a memory dump, either of
the gpg-agent process or a full system dump. To demonstrate our work,
we provide Volatility3 plugins to retrieve associated key material and the
original passphrase. We also show how this can be used as a defensive
countermeasure in some practical scenarios.

1 Introduction

Pretty Good Privacy (PGP) and the open source implementation GNU
Privacy Guard (GPG) are encryption solutions following the OpenPGP
standard [7]. Even if GPG has been criticized in the past, it is widely
used and deployed and has been publicly reviewed during many years [18].
Thus it is used in practice to protect sensitive data.

Volatility is a widely used forensics framework [11]. It is used to analyze
volatile memory dump artifacts to extract data. For example, it has been
used in the past to recover Bitlocker volume encryption keys while they
are in RAM [17] or to solve challenges of previous SSTIC editions [4]. The
framework is highly customizable and allows writing plugins in Python
to Ąt speciĄc needs. In 2021, the Volatility Foundation released a new
version of the framework, Volatility3 [8].

This work brieĆy explains the basic usage of GPG, then how GPG
stores the passphrases in RAM. A short description of relevant previous
works is then given. From this knowledge we provide a way to extract
the passphrase from a memory dump. We Ąrst show a bug of Libgcrypt
(the GPG cryptographic library) memory cleaning which allows reading 8
bytes of the passphrase in cleartext. Then we show how to Ąnd AES keys
in memory and how to decrypt cached items containing the passphrases.



2 GnuPG memory forensics

We give practical examples where these methods may be applied and, to
demonstrate our analysis, we provide Volatility3 plugins implementing
our methods.

2 GPG usage of cached items

A common way to decrypt data with GPG on a command line is as
following:

$ gpg -d clear .gpg

gpg: encrypted with 3072 - bit RSA key , ID 8 BEE55C2F43F1E63 , created

2021 -07 -14

"user -test <user@test .org >"

Hello GPG

The Ąrst time the decryption is called, the system asks the user for
their passphrase to decrypt the private key needed to decrypt the Ąle.
Then for the subsequent decryptions, the passphrase is not asked but read
from cache. The same mechanism is used for symmetric-key encryption.
The cache time to live has a default value of 10 minutes. After the time
to live elapsed, the cached item is cleared from memory.

To avoid having key material directly in cleartext in memory, GPG
encapsulates such key material before storing it in memory. The idea of
that is that if a TPM is available, then the encapsulation key can be
stored in a safe memory area. However, TPMs are usually not used and
the encapsulation key stays in regular memory.

3 GPG memory structure

A cached item is stored in the ITEM structure. We Ąnd this structure
in gnupg/agent/cache.c (GPG version 2.3.4):

56 /* The cache object . */

57 typedef struct cache_item_s * ITEM ;

58 struct cache_item_s {

59 ITEM next ;

60 time_t created ;

61 time_t accessed ; /* Not updated for CACHE_MODE_DATA */

62 int ttl; /* max. lifetime given in seconds , -1 one means infinite

*/

63 struct secret_data_s *pw;

64 cache_mode_t cache_mode ;

65 int restricted ; /* The value of ctrl -> restricted is part of the

key. */

66 char key [1];

67 };



N. Amiet, S. Pelissier 3

68

69 /* The cache himself . */

70 static ITEM thecache ;

Listing 1. The cache_item_s structure

The ITEM structure is a chained list containing the cached item address
and additional data. Among them, there are the time of creation and
time of last access. These values are unix epoch times, the number of
seconds elapsed since January 1, 1970. Then there is the time to live (ttl)
Ąeld which is the number of seconds gpg-agent has to keep the item in
cache. By default it is set to 10 minutes (0x0258 seconds). If gpg-agent

found that the last accessed time is older than the time to live, the item
is cleared from cache. After that we have the address of a secret_data_s

structure. The secret_data_s structure contains the length of the cached
item in bytes followed by the encrypted item with AES in key wrap mode:

51 struct secret_data_s {

52 int totallen ; /* This includes the padding and space for AESWRAP .

*/

53 char data [1]; /* A string . */

54 };

Listing 2. The secret_data_s structure

The encapsulation key used to encrypt the data is generated randomly
when gpg-agent starts. Since GPG also stores the encapsulation key in
memory, one simply needs to know where it is stored in memory to then
decrypt the cached item.

3.1 AES Key wrap

GnuPG uses AES Key Wrap [10] mode of operation to encapsulate
key material in memory. The AES Key wrap algorithm is used to encrypt
(wrap) keys or secrets with another key. It is used in several solutions like
Apple FileVault 2 [6] or Cryptomator [14]. As shown in Ągure 1, the mode
uses two blocks of 64 bits concatenated as input of AES encryption.

This step is iterated 6 times on the Ąnal R values obtained from the
ciphertext. Decryption works in exactly the same way but in the reverse
order. The initialization vector (IV) can be any value but the RFC default
value is 0xa6a6a6a6a6a6a6a6. It allows for veriĄcation of the integrity of
the decrypted key after the decryption. If the last decrypted block yields
a value that starts with the IV, decryption is considered correct as long
as no other error is returned. GPG uses the implementation of AES key
wrap provided by the libgcrypt library.



4 GnuPG memory forensics

Fig. 1. First iteration of AES Key wrap encryption

In GPG, the cached item encryption is used to prevent attack-
ers from simply grepping for passphrases in memory as commented in
gnupg/agent/cache.c (GPG version 2.3.4) and shown in listing 3.

39 /* The encryption context . This is the only place where the

40 encryption key for all cached entries is available . It would be

nice

41 to keep this (or just the key ) in some hardware device , for

example

42 a TPM . Libgcrypt could be extended to provide such a service .

43 With the current scheme it is easy to retrieve the cached entries

44 if access to Libgcrypt Šs memory is available . The encryption

45 merely avoids grepping for clear texts in the memory .

Nevertheless

46 the encryption provides the necessary infrastructure to make it

47 more secure . */

48 static gcry_cipher_hd_t encryption_handle ;

Listing 3. GPG memory threat model

However, as we will see later, someone who has access to the memory
can also retrieve the encryption key and decrypt cached items anyway.

4 Previous works

A previous problem concerning gpg-agent and the cached items was
exploited by GPG Reaper [16]. The time to live of cached items was
not checked if no gpg-agent action was performed and thus some items
may stay in memory indeĄnitely. Then, if a machine is compromised, the
guru debug level (--debug-level guru) allows displaying cached items
in clear if they were not deleted. The time to live problem was corrected in
version 2.2.6. The guru debug level, as shown in listing 4, is still working
as intended, for example, if we decrypt a Ąle while the passphrase is still
in memory.

$ gpg --debug - level guru -d clear .gpg

...

gpg: DBG: chan_4 -> GETINFO cmd_has_option GET_PASSPHRASE repeat



N. Amiet, S. Pelissier 5

gpg: DBG: chan_4 <- OK

gpg: DBG: chan_4 -> GET_PASSPHRASE --data --repeat =0 --

S9319569F117FE96D X X Enter + passphrase %0A

gpg: DBG: chan_4 <- D testpassword

gpg: DBG: chan_4 <- OK

...

Listing 4. GPG debug level guru

The passphrase testpassword is returned in clear from gpg-agent.
However, access to the machine containing the cached item is required in
this case.

An interesting Volatility plugin allows extracting Bitlocker volume
encryption keys from memory dumps [17]. This plugin uses a known
method [9,12] which consists in scanning the memory and searching by
blocks of 16 bytes if the block satisĄes the AES key schedule relations
with respect to the blocks next to it. If such blocks are found, we can
conclude that an AES key was found in memory. Since Bitlocker uses AES
in various modes for volume encryption, this technique is used to recover
the volume encryption keys.

5 Cached item retrieval

Two attack vectors will be discussed here allowing to retrieve
passphrases in GPG memory.

5.1 Partial passphrase retrieval

To avoid having sensitive values left in memory after process-
ing, libgcrypt deletes those values when they are not used any-
more. For example, a variable is wiped with the function wipememory

and the stack is cleaned with the function _gcry_burn_stack.
However, in libgcrypt, the function _gcry_cipher_aeswrap_decrypt

(libgcrypt/cipher/cipher-aeswrap.c on line 81) did not clean a tem-
porary variable containing the last decrypted block. Suppose we use
GPG to decrypt some cleartext using a passphrase. At the end of the
cached item decryption, the temporary variable contains the IV value
0xa6a6a6a6a6a6a6a6 followed by the Ąrst 8 bytes of the passphrase. For
example, if a dump of gpg-agentŠs memory using gcore or a dump of
the whole system memory using LiME [15] can be obtained, then, we
should retrieve the constant 0xa6a6a6a6a6a6a6a6 in memory, next to
the Ąrst 8 bytes of the passphrase. We reported this problem to GPG
maintainers [13]. This was quickly corrected and following versions of
GPG 2.3.4 should not be affected by this issue.



6 GnuPG memory forensics

5.2 Passphrase decryption

We saw that each cached entry has two timestamps created and
accessed of type time_t. This information can be leveraged to search
for such patterns in memory and retrieve the location of cache_item_s

instances. If we can estimate the time of creation of the cached item,
we can search for masked timestamps concatenated in memory fol-
lowed by the time to live value. For example the regular expres-
sion .{3}\x00\x00\x00\x00.{3}\x61\x00\x00\x00\x00\x58\x02 will
search for all timestamps created after July 27, 2021 12:45:52 PM and
before February 6, 2022 5:06:08 PM with a time to live of 10 minutes. To
further reduce the number of false positives during the search, for each
match, the created time can be checked to be less than or equal to the
accessed time. Then, as soon as the ITEM structure has been found, we
can access the secret_data_s structure.

To recover the encryption key, we used the same method as the one
used by the Bitlocker plugin [17]. We scan the process memory until we
Ąnd a 128-bit expanded AES key. Then we use this key to decrypt the
cached item. If the integrity of AES key wrap is veriĄed we know we have
properly decrypted the cached item and recovered the passphrase.

6 Real-world use cases

This section describes real-world use cases where GPG is used and
in-memory key material recovery has an impact. From a general point of
view, if an attacker has physical access to a machine, they can copy the
volatile memory and later apply the techniques explained before.

Memory forensics may be used during a criminal investigation to
analyze memory dumps obtained during a search and seizure [5]. After the
data has been copied the investigator may need to obtain the passphrases
stored encrypted in cached items to further decrypt conversations. These
techniques may also be applied to investigate virtual machines stored
remotely in servers which are seized.

Ransomware is a common problem nowadays. These malicious software
encrypt Ąles on an infected machine and ask the owner for a ransom so that
they can recover their Ąles. It happens that some ransomware, rely on well
studied tools to encrypt a userŠs data. Ransomware such as KeyBTC [1],
VaultCrypt [2] or Qwerty [3] use GPG to encrypt Ąles.

In the event that a victim of such a ransomware just noticed what
happened when they get infected, the victim or the incident response team
could make a memory dump of the whole system and later retrieve the



N. Amiet, S. Pelissier 7

password or decryption key from memory. Thus, thwarting the ransomware
threat and retrieving the original Ąles without having to pay a ransom at
all. Note that the ransomware would have to rely on symmetric encryption
for this to work (gpg --symmetric).

7 Open source contributions

We developed two plugins for Volatility3 available at https://github.

com/kudelskisecurity/volatility-gpg. The Ąrst plugin retrieves par-
tial (or complete, up to 8 characters) passphrases from memory by search-
ing in gpg-agentŠs memory the constant IV of aes-wrap. This plugin
would not work on versions of GPG later than version 2.3.4. Listing 5
shows an example of usage on an Ubuntu 21.10 VM dump.

$ vol -f ubuntu -21.10 - vm -gpg.raw -s ./ volatility -gpg/ symbols / -p ../

gpg -mem - forensics / volatility -gpg/ linux . gpg_partial

Volatility 3 Framework 2.0.0

Progress : 100.00 Stacking attempts finished

Offset Partial GPG passphrase (max 8 chars )

0 x7fb73d53a2a0 my_passp

Listing 5. Partial passphrase recovery

The Ąrst 8 bytes of the passphrase were found in clear in memory. The
plugin execution took 6.4 seconds on an Intel Core i7-7600U CPU for a
1GB RAM dump.

$ vol -f ubuntu -21.10 - vm -gpg.raw -s ./ volatility -gpg/ symbols / -p ../

gpg -mem - forensics / volatility -gpg/ linux . gpg_full

Volatility 3 Framework 2.0.0

Progress : 100.00 Stacking attempts finished

Offset Private key Secret size Plaintext

0 x7fb738002658 0 b78497b0d26239211b8841c59e943f7 32

my_passphrase

Listing 6. Full passphrase recovery

The second plugin retrieves cached items in memory and cache en-
cryption keys and therefore helps recover plaintexts. An example of usage
on an Ubuntu 21.10 VM dump is shown in listing 6, where the plugin
successfully found the entire passphrase my_passphrase in memory. The
plugin execution took 59.7 seconds on an Intel Core i7-7600U CPU for a
1GB RAM dump.

https://github.com/kudelskisecurity/volatility-gpg
https://github.com/kudelskisecurity/volatility-gpg


8 GnuPG memory forensics

8 Conclusions

To conclude, we have analyzed a bug in libgcrypt where after cleaning
memory it was still possible to read 8 bytes of the passphrase in clear
from a memory dump. We have further analyzed how to decrypt cached
items stored in GPG memory. Our work highlights that GPG is a solid
encryption solution, but it should be used in conjunction with a TPM or
a secure enclave solution to harden the security against physical attacks.

References

1. Lawrence Abrams. Keybtc, a simple yet effective encrypting ransomware, 2014.
[Online; accessed 10-December-2021].

2. Lawrence Abrams. Vaultcrypt uses batch Ąles and open source gnupg to hold your
Ąles hostage, 2015. [Online; accessed 10-December-2021].

3. Lawrence Abrams. Qwerty ransomware utilizes gnupg to encrypt a victims Ąles,
2018. [Online; accessed 10-December-2021].

4. Pierre Bienaimé. Solution du challenge SSTIC 2020. 2020.

5. Richard Carbone, C. Bean, and Martin Salois. An in-depth analysis of the cold
boot attack: Can it be used for sound forensic memory acquisition? 2011.

6. Omar Choudary, Felix Gröbert, and Joachim Metz. InĄltrate the Vault: Security
Analysis and Decryption of Lion Full Disk Encryption. IACR Cryptology ePrint
Archive, 2012:374, 2012.

7. Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney L. Thayer, and David Shaw.
OpenPGP Message Format. RFC 4880, November 2007.

8. Volatility Foundation. Volatility 3 1.0.1, 2021. [Online; accessed 26-December-2021].

9. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold boot attacks on encryption keys. In 17th USENIX
Security Symposium (USENIX Security 08), San Jose, CA, July 2008. USENIX
Association.

10. Russ Housley and Jim Schaad. Advanced Encryption Standard (AES) Key Wrap
Algorithm. RFC 3394, October 2002.

11. Michael Hale Ligh, Andrew Case, Jamie Levy, and Aaron Walters. The Art of
Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory. Wiley Publishing, 1st edition, 2014.

12. Sylvain Pelissier. In radare2, /c means Cryptography. R2Con, 2020.

13. Sylvain Pelissier. First 8 bytes of cache item left in clear in memory after decryption.,
2021. [Online; accessed 10-December-2021].

14. Skymatic. Cryptomator, 2021. [Online; accessed 03-January-2022].

15. Joe Sylve. LiME Linux Memory Extractor, 2012. [Online; accessed 10-December-
2021].

16. Kacper Szurek. GPG Reaper, 2018. [Online; accessed 22-December-2021].

17. Marcin Ulikowski. Volatility Framework: bitlocker. 2016.

18. Koch Werner. A new future for gnupg, Jan 2022.


	GnuPG memory forensics

