
Polynonce: An ECDSA Attack 
and Polynomial Dance

Nils Amiet
Marco Macchetti

August 12, 2023 - DEF CON 31



Who are we?

● Nils Amiet
○ Security researcher @ Kudelski Security
○ Privacy
○ Data processing at scale
○ Linux enthusiast

● Marco Macchetti
○ Cryptographer @ Kudelski Security
○ Applied cryptography
○ Hardware design
○ Cryptanalysis

2



Table of contents

● Digital signatures, ECDSA and randomness
● Introducing a new attack on ECDSA: Polynonce
● How to apply this in practice

○ Things we tried to attack
○ How we did it
○ What we learned

● Demo
● Results and fun facts
● Takeaways

3



Introduction

4



Digital signatures - the basics

● What is a digital signature?
○ Proof of knowledge of private key
○ Verified with public key
○ Private key = identity

● On blockchains, transactions are digitally signed
○ Private key =  

● Anyone can try to steal your key. Wherever it is stored.
○ Backups
○ Paper notes / metal plates
○ Brain wallets
○ A secret place
○ Sometimes it’s on storage and encrypted with a weak password…

5



Digital signatures - not so basic

● Signature algorithm = {keygen, sign, verify}
● Randomness?

○ Keygen :                         => keypair
○ Sign :  private key + message +                    => signature
○ Verify : signature + message + public key  => pass/fail

● Signature => private key ???
○ Yes, under some assumptions. 
○ For example, in keygen if the key is generated with low entropy 
○ … or using a brain wallet method
○ Small keys / easy to guess keys

● But provided the key is properly generated?
○              during sign -> more attack surface!

6



ECDSA

● ECDSA is probably the most used and deployed signature algorithm
● “EC” stands for elliptic curve
● An elliptic curve is a curve…

○ y² = x³ + ax + b => {G, a, b, N, P,}
○ secp256k1, “the Bitcoin curve”

● And a set of points… 
● We can perform operations with points and remain in the group

○ R=P+Q
○ R=[5]P=P+P+P+P+P

● Why EC?
● Because of the EC discrete logarithm problem (ECDLP)

○ k, G  ⇒ [k]G     EASY
○ [k]G, G  ⇒  k    HARD

● They can be used to implement digital signatures! -> ECDSA

7



ECDSA {keygen, sign, verify}

● Keygen
○ pick integer d in [1, n-1] uniformly at random
○ Congratulations : d is your private key
○ Q = [d]G is your public key

● Sign
○ Hash the message h = H(M)
○ pick integer k in [1, n-1] uniformly at random  => the “nonce”
○ r = x of R = [k]G
○ s = k-1(h + rd)
○ Signature is (r, s)

● Verify
○ Hash the message h = H(M)
○ Compute u1 = hs-1 and u2=rs-1

○ Compute R = [u1]G + [u2]Q
○ If x of R == r then PASS else FAIL

8

● Takeaway: a random value k 
(the nonce) needs to be 
generated for each ECDSA 
signature

○ And it should be unique 
and non-biased



Nonces, nonces….

● Keys are generated once… nonces once per signature!
● If bits of the nonces can be predicted or are known…

○ Lattice attacks
● Let's ignore (remote) side channel attacks

○ But they can be used in combination with lattice attacks
● Let's pick our dice!

○ Good ones: CSPRNGs, HMAC, AES, Yarrow, etc…
○ Bad ones: LCGs, QCGs, LFSRs, etc... -> NIST 800-22 criticism
○ Awful ones: rand, fixed secret constants (incremented), dice roll, playstation3, etc...

● We still have to seed it... with enough entropy 
● Power-on attacks? Do we have to seed every time??

9



Bad RNGs - let’s pick one

● Linear congruential generator (LCG)
● GMP, other libs, NIST 800-22
● Random numbers are obtained as k1 = a*k0 + b with known a, b (usually b=1)

○ k1 depends linearly on k0
● No bit bias but…
● As shown by Google Paranoid Crypto project

○ Lattice attacks can be used to recover the private key
○ 22 signatures needed to attack an {128, 64} LCG generating nonces for the Bitcoin curve 

(256 bits)
● And what about full-state (256-bit) LCG modulo N?

○ No results published w.r.t. ECDSA
○ What about increasing degree to quadratic (QCG) or cubic (CCG)? -> lattice attacks are not 

possible
○ with UNKNOWN coefficients???!?!?

● It should be safe, right...? 
● NO! -> Polynonce -> private key can be obtained in a matter of fractions of a second.

10



Introducing Polynonce:
A novel ECDSA attack

11



Intuition behind the attack

● One (non working) way to break ECDSA is to solve the discrete logarithm problem
○ r = x of R=[k]G

● And what about the other half of each signature, s?
○ Rewriting the expression of s => k=h/s+(r*d)/s

○ linear relationship between the nonce and the static private key d!
● So, there is only one secret behind all your signatures!
● For instance, we can write:

○ R1=[a]R0+[b]G with known a and b

○ You are not supposed to write this if you don’t know the discrete logs of R0 and R1…
● What does this all mean?

○ The value of s brings additional information!
● How can we use it to attack the private key?

12



Polynonce on LCGs

● We can break unknown-coefficients LCGs with full state with 4 signatures and 100% success
● Suppose that nonces are generated as follows:

○ k1 = a1k0+a0

○ k2 = a1k1+a0

○ k3 = a1k2+a0

○ And we don’t know a1, a0
● We can subtract the second equation from the first, and the third from the second

○ (k1-k2) = a1(k0-k1)
○ (k2-k3) = a1(k1-k2)

● We got rid of a0…. and then we can write (we skip a few steps here):
○  (k1-k2)(k1-k2)=(k0-k1)(k2-k3)

● We also got rid of a1!
● We got a polynomial in ki… but we can substitute each ki with its expression in d!
● We got a polynomial with only unknown d!
● We find its roots… and among them we find d, the private key!

13

Remember:
● k=h/s+(r*d)/s
● (r,s): signature
● h: msg hash
● d: private key



Extensions

● In the eprint paper, we extend all this to n-degree polynomial relations
● This is possible using a recursive algorithm that eliminates all unknown coefficients
● It is:

○ Fast
○ Generic
○ Not using lattice algorithms
○ No need for pre-computations

● https://eprint.iacr.org/2023/305

14

https://eprint.iacr.org/2023/305


How to attack things with all 
of that?

15



Polynonce - Requirements in practice

● In practice, what do we need to run the attack?
○ At least 4 signatures generated by the same private key

■ More signatures are needed for higher degree relations between nonces
○ The associated public key
○ The message hash associated with each signature
○ Signatures must be ordered by generation time

● What's the output and impact of the attack when it succeeds?
○ If the nonces follow the relation:

■ We retrieve the private key that was used
to generate the vulnerable signatures

16



Bitcoin

● A block contains multiple transactions
○ Transactions can be of multiple types

● Each transaction contains inputs and outputs
● Each input is signed with ECDSA and curve secp256k1, SHA-256 hashed
● What do we need to attack it?

○ Public key
■ Contained in the input

○ Signature (r, s)
■ Also contained in the input

○ Message 
■ Must be computed

17



Bitcoin - Computing the message

● Message not only depends on fields of the current transaction
● Also depends on fields from previous transactions
● Procedure to compute the message is error-prone and under documented
● After lots of trial and error, we computed the right message
● How to check we got it right?

○ Verify the signatures

18

Remember:
● ECDSA-Verify = f(msg, signature, pubkey)



Bitcoin - Obtaining the data

● Sync with Bitcoin Core
○ Takes about 24 hours to sync
○ 430 GB disk space

● All blocks until September 5, 2022
● Dump the signatures, messages and public keys

○ Forked rusty-blockparser, written in Rust
○ Read block files from disk
○ Takes 24 hours (on SSD)
○ Dump size: 271 GB

● 763 million signatures dumped
● Only P2PKH (Pay-to-Public-Key-Hash) transactions

○ Most common transaction type (55% of all transactions)
● Our open source code is available at:

○ https://github.com/kudelskisecurity/ecdsa-dump-bitcoin

19

https://github.com/kudelskisecurity/ecdsa-dump-bitcoin


Ethereum

20



Ethereum

● Transactions are signed with ECDSA
○ Same curve and hash function as Bitcoin
○ Many other blockchains use ECDSA
○ 3 out of 4 of the top blockchains use ECDSA

● What do we need to attack it?
○ Signature (r, s)

■ Contained in the transaction
○ Public key

■ Not directly in the transaction
■ Can be recovered from the signature and message hash (ECDSA-Recover)

○ Message
■ Must be computed

21



Ethereum - Computing the message

● Multiple Ethereum protocol versions
○ Protocol version applies based on block number
○ Examples:

■ Ethereum version “Spurious Dragon” (blocks 2’675’000 to 4’369’999)
■ Ethereum version “Berlin” (blocks 12’244’000 to 12’964’999)

● Message is computed differently based on protocol version
● No need to refer previous transactions, no inputs and outputs
● How to check we got it right?

○ Compute the message
○ Recover the public key from message and signature
○ Verify signature
○ Pubkey => Wallet address, then check  wallet address == source address (in tx)

● Our open source code is available at:
○ https://github.com/kudelskisecurity/ecdsa-dump-ethereum

22

https://github.com/kudelskisecurity/ecdsa-dump-ethereum


Ethereum - Obtaining the data

● Install + run
○ geth (execution client)
○ lighthouse (consensus client)

● Let the chain sync
○ Takes about 3 weeks
○ geth takes 1.6 TB disk space
○ lighthouse takes 120 GB disk space

● All blocks until October 28, 2022
● Dump the signatures, messages and public keys

○ Written in Python
○ Use geth JSON-RPC API to get blocks in JSON
○ Takes about 3 days
○ Output file size: 628 GB

● 1.7 billion signatures dumped

23



Other datasets we explored
(not only blockchains)

24



Sample of TLS servers

● TLS handshake
○ Signatures are in ServerKeyExchange TLS messages

● Used list of domains that receive the most traffic 
○ Cisco Umbrella 1 Million domains

● 3 network scans on TLS servers
○ Sample of ~10k targets
○ Cipher suite: ECDHE-ECDSA-AES128-SHA256
○ Make sure server uses an ECDSA key
○ Total scan time, less than 24 hours

● About 6k unique signatures dumped in total
○ Just a small sample of what’s out there

25



Minerva datasets

● Public datasets of ECDSA signatures
● We covered these datasets (1 smartcard, 1 TPM, 4 software libraries)

○ Athena IDProtect
○ TPM-FAIL
○ libgcrypt
○ MatrixSSL
○ WolfCrypt
○ Simulated

● Each dataset contains 50k signatures, except TPM-FAIL (383k)
○ Signatures in a dataset are all generated with the same private key and the same message

● Only sort by timestamp is needed
○ Datasets ready for use

● https://github.com/crocs-muni/minerva

26

https://github.com/crocs-muni/minerva


Statistics

27



Bitcoin vs Ethereum #pubkeys by #signatures

28



Stats

● Bitcoin (P2PKH)
○ 424 M unique public keys
○ 97% generated less than 4 signatures
○ The rest: 12M pubkeys we can try to attack

● Ethereum
○ 151 M unique public keys
○ 77% generated less than 4 signatures
○ The rest: 34M pubkeys we can try to attack

29



Attack setup

30



Implementing the attack

● Implemented in Sagemath (Python)
● Sliding window of size N signatures of the same public key
● Multithreaded implementation
● Our open source code is on Github:

○ https://github.com/kudelskisecurity/ecdsa-polynomial-nonce-recurrence-attack

31

https://github.com/kudelskisecurity/ecdsa-polynomial-nonce-recurrence-attack


Demo

● Attacking a vulnerable TLS server
○ Establish multiple TLS connections to server
○ Dump signatures, messages and public keys
○ Run the attack
○ Get the private key

32



Results

33



34



35



Results - Bitcoin and Ethereum

● 128-core VM
● N=5 signatures (quadratic)
● Sort signatures by block time
● Bitcoin

○ Runtime: 2 days and 19 hours
○ Retrieved private keys of 773 unique wallets
○ All had a zero balance
○ Estimated cost: 285 USD

● Ethereum
○ Did 22% in 48 hours
○ Retrieved private keys of 2 unique wallets
○ Both had zero balance
○ Estimated cost (for 100%): 900 USD

● Turns out they all had signatures with repeated nonces
● Polynonce found those but they could also have been found in a different way

36



Results - TLS, Minerva

● 4-core laptop
● N=4,5,6
● TLS

○ Runtime: just a few seconds
○ Cost: cheap
○ Out of our small sample, no successful attacks
○ Difficult to find a target where consecutive signatures can be triggered

● Minerva
○ Runtime:

■ 50k datasets: about 10 minutes each
■ TPM-fail: about 70 minutes each
■ Total: less than 6 hours

○ Cost: cheap
○ No successful attacks on the 6 datasets tested

37



Fun facts

● Where did the stolen Bitcoin go?
○ 466 different wallets that received stolen funds

■ Top wallet received 75 BTC
○ Total 144 BTC stolen (9.4M USD at Bitcoin peak)
○ Vanity addresses used

■ 1idiot, 1Kgift, 1dust, 1Hack, etc.
○ 1idiot => 1andreas in early 2018

■ Andreas Antonopoulos, received over 100 BTC in donations
○ Mostly happened between 2014 and 2017

● Bitcointalk forums
○ Public talk about stolen funds (2014, 2016) due to repeated nonces
○ “So far I have collected about 7 BTC.” - forum user, April 2016

38



Conclusions

39



Conclusions

● Make sure nonce generation is not biased
● Safer alternatives to ECDSA that use deterministic nonce generation

○ Deterministic ECDSA (RFC 6979)
○ EdDSA

● We barely scratched the surface
○ Email signatures
○ Signed executables
○ TLS servers out there
○ Rest of Ethereum and Bitcoin (non-P2PKH)

■ + Higher degree relations
○ Other blockchains
○ Smartcards, constrained devices
○ etc.

● It’s easy for you to check your own wallet
○ No cloud needed

40



Thank you

● For more research from our team
○ Research blog

■ https://research.kudelskisecurity.com
■ More exciting recent research on this topic

● We hope to make people more secure by releasing our code
○ https://github.com/kudelskisecurity

● Questions?

41

https://research.kudelskisecurity.com
https://research.kudelskisecurity.com/2023/07/11/lattice-free-half-half-attack-on-bitcoin-and-ethereum/
https://github.com/kudelskisecurity

