Polynonce: An ECDSA Attack
and Polynomial Dance

Nils Amiet
Marco Macchetti

August 12, 2023 - DEF CON 31 KUDELSKI 6

SECURITY

Who are we?

e Nils Amiet e Marco Macchetti
o Security researcher @ Kudelski Security o Cryptographer @ Kudelski Security
o Privacy o Applied cryptography
o Data processing at scale o Hardware design
o Linux enthusiast o Cryptanalysis

KUDELSKI
SECURITY Q

Table of contents

e Digital signatures, ECDSA and randomness
Introducing a new attack on ECDSA: Polynonce
e How to apply this in practice
o Things we tried to attack
o Howwedid it
o What we learned
e Demo
Results and fun facts
e Takeaways

Introduction

Digital sighatures - the basics

e What is a digital signature?
o Proof of knowledge of private key
o Verified with public key
o Private key = identity
e On blockchains, transactions are digitally signed
o Private key = .
e Anyone can try to steal your key. Wherever it is stored.
o Backups
Paper notes / metal plates
Brain wallets
A secret place
Sometimes it's on storage and encrypted with a weak password...

o O O O

Digital signhatures - not so basic

e Signature algorithm = {keygen, sign, verify}
e Randomness?
o Keygen: & =>keypair
o Sign: private key"+ message + @ =>signature
o Verify : signature + message + public key => pass/fail
e Signature => private key ???
o Yes, under some assumptions.
o For example, in keygen if the key is generated with low entropy
o ..orusing a brain wallet method
o Small keys / easy to guess keys
e But provided the key is properly generated?

o M9 . during sign ->more attack surface!

ECDSA

ECDSA is probably the most used and deployed signature algorithm
e “EC” stands for elliptic curve
An elliptic curve is a curve...
o y?2=x®+ax+b=>{G,a,b,N,P}
o secp256k1, “the Bitcoin curve”
And a set of points...
e We can perform operations with points and remain in the group

o R=P+Q
o R=[5]P=P+P+P+P+P
e WhyEC?

Because of the EC discrete logarithm problem (ECDLP)
o kG =[klG EASY
o [klIG,G = k HARD
e They can be used to implement digital signatures! -> ECDSA

ECDSA {keygen, sign, verify}

e Keygen
o pickinteger din [1, n-1] uniformly at random
o Congratulations : d is your private key .
o Q=I[d]G is your public key %

e Sign

o Hash the message h = H(M)

o pick integer k in [1, n-1] uniformly at random => the “nonce”
o r=xof R=[k|G

o s= k'(h +rd) e Takeaway: arandom value k
. VgrifySIgnature is (1.) (the nonce) needs to be

o Hash the message h = H(M) generated for each ECDSA

o Compute ul = hs™ and u2=rs™ signature

o Compute R =[u1]G +[u2]Q o And it should be unique

o If x of R ==rthen PASS else FAIL and non-biased

Nonces, nhonces....

Keys are generated once... nonces once per signature!
If bits of the nonces can be predicted or are known...
o Lattice attacks
Let's ignore (remote) side channel attacks
o Butthey can be used in combination with lattice attacks
Let's pick our dice!
o Good ones: CSPRNGs, HMAC, AES, Yarrow, etc...
o Badones: LCGs, QCGs, LFSRs, etc... -> NIST 800-22 criticism

We still have to seed it... with enough entropy
Power-on attacks? Do we have to seed every time??

A WARNING:

Bad RNGs - let’s pick one

e Linear congruential generator (LCG)
GMP, other libs, NIST 800-22
e Random numbers are obtained as k, = a*k_ + b with known a, b (usually b=1)
ok, depends linearly on k,
e No bit bias but...
e As shown by Google Paranoid Crypto project
o Lattice attacks can be used to recover the private key
o 22 signatures needed to attack an {128, 64} LCG generating nonces for the Bitcoin curve
(256 bits)
e And what about full-state (256-bit) LCG modulo N?
o No results published w.r.t. ECDSA
o What about increasing degree to quadratic (QCG) or cubic (CCG)? -> lattice attacks are not
possible
o with UNKNOWN coefficients???1?1?
e It should be safe, right...?

Introducing Polynonce:
A novel ECDSA attack

Intuition behind the attack

e One (non working) way to break ECDSA is to solve the discrete logarithm problem
o r=xof R=[k]G

e And what about the other half of each signature, s?
o Rewriting the expression of s => k=h/s+(r*d)/s

o linear relationship between the nonce and the static private key d!
e So, thereis only secret behind all your signatures!
e Forinstance, we can write:

o R,=[a]R,+[b]G with knownaand b

o You are not supposed to write this if you don't know the discrete logs of R, and R. ...
e What does this all mean?

o The value of s brings additional information!
e How can we use it to attack the private key?

Polynonce on LCGs

We can break unknown-coefficients LCGs with full state with 4 signatures and 100% success
Suppose that nonces are generated as follows:

0 k1 = ko+
o) k2= k1+
o k3= k2+
o And

We can subtract the second equation from the first, and the third from the second
o (kk) =2 (ksk,)
o (kyky) =2, (kyk,)

We got rid of a,.... and then we can write (we skip a few steps here):
o (koK) (K Ky)=(kyk,) (K,k,)

We also got rid of a.!

We got a polynomial in k.... but we can substitute each k. with its expression in d!

We got a polynomial with only unknown d!
! Remember:

k=h/s+(r*d)/s
(r,s): signature
h: msg hash
d: private key

Extensions

e Inthe eprint paper, we extend all this to n-degree polynomial relations
e Thisis possible using a recursive algorithm that eliminates all unknown coefficients
o |tis:
o Fast A Novel Related Nonce Attack for ECDSA
o Generic
o Not using lattice algorithms iatEs Marcher
(@) No need for pre-com putations Kudelski Security, Switzerland
marco.macchetti@kudelskisecurity.com
[

Abstract. We describe a new related nonce attack able to extract the
original signing key from a small collection of ECDSA signatures gener-
ated with weak PRNGs. Under suitable conditions on the modulo order
of the PRNG, we are able to attack linear, quadratic, cubic as well as
arbitr degree recurrence relations (with unknown coefficients) with
few signatures and in negligible time. We also show that for any collec-
tion of randomly generated ECDSA nonces, there is one more nonce that
can be added following the implicit recurrence relation, and that would
allow retrieval of the private key > exploit this fact to present a novel
rogue nonce attack against EC Up to our knowledge, this is the
first known attack exploiting generic and unknown high-degree algebraic
relations between nonces that do not require assumptions on the value

of single bits or bit sequences (e.g. prefixes and suffixes).

https://eprint.iacr.org/2023/305

How to attack things with all
of that?

Polynonce - Requirements in practice

e In practice, what do we need to run the attack?
o At least 4 signatures generated by the same private key
m More signatures are needed for higher degree relations between nonces
o The associated public key
o The message hash associated with each signature
o Signatures must be ordered by generation time
e What's the output and impact of the attack when it succeeds?
o If the nonces follow the relation:
m We retrieve the private key that was used
to generate the vulnerable signatures

Bitcoin

e Ablock contains multiple transactions
o Transactions can be of multiple types
Each transaction contains inputs and outputs
e Eachinputis signed with ECDSA and curve secp256k1, SHA-256 hashed
e What do we need to attack it?
o Public key
m Contained in the input
o Signature (r, s)
m Also contained in the input
o Message
m Must be computed

Bitcoin - Computing the message

Message not only depends on fields of the current transaction

Also depends on fields from previous transactions

Procedure to compute the message is error-prone and under documented

After lots of trial and error, we computed the right message

How to check we got it right?
o Verify the signatures

Remember:
e ECDSA-Verify = f(msg, signature, pubkey)

Bitcoin - Obtaining the data

Sync with Bitcoin Core
o Takes about 24 hours to sync
o 430 GB disk space
e All blocks until September 5, 2022
Dump the signatures, messages and public keys
o Forked rusty-blockparser, written in Rust
o Read block files from disk
o Takes 24 hours (on SSD)
o Dump size: 271 GB
e 763 million signatures dumped
Only P2PKH (Pay-to-Public-Key-Hash) transactions
o Most common transaction type (55% of all transactions)

e Ouropen source code is available at:
(@]

https://github.com/kudelskisecurity/ecdsa-dump-bitcoin

Ethereum

Ethereum

e Transactions are signed with ECDSA

o Same curve and hash function as Bitcoin

o Many other blockchains use ECDSA

o 3 out of 4 of the top blockchains use ECDSA
e What do we need to attack it?

o Signature (r, s)

m Contained in the transaction
o Public key

m Can be recovered from the signature and message hash (ECDSA-Recover)
o Message
m Must be computed

' 4

&

Ethereum - Computing the message

Multiple Ethereum protocol versions
o Protocol version applies based on block number
o Examples:
m Ethereum version “Spurious Dragon” (blocks 2'675'000 to 4'369'999)
m Ethereum version “Berlin” (blocks 12'244'000 to 12'964'999)
Message is computed differently based on protocol version
No need to refer previous transactions, no inputs and outputs
How to check we got it right?
o Compute the message
o Recover the public key from message and signature
o Verify signature
o Pubkey => Wallet address, then check wallet address == source address (in tx)
e Our open source code is available at:
O

https://github.com/kudelskisecurity/ecdsa-dump-ethereum

Ethereum - Obtaining the data

Install + run
o geth (execution client)
o lighthouse (consensus client)
Let the chain sync
o Takes about 3 weeks
o gethtakes 1.6 TB disk space
o lighthouse takes 120 GB disk space
All blocks until October 28, 2022
Dump the signatures, messages and public keys
o Written in Python
o Use geth JSON-RPC API to get blocks in JSON
o Takes about 3 days
o Output file size: 628 GB
1.7 billion signatures dumped

C

Other datasets we explored
(not only blockchains)

Sample of TLS servers

e TLS handshake
o Signatures are in ServerKeyExchange TLS messages
e Used list of domains that receive the most traffic
o Cisco Umbrella 1 Million domains
e 3 network scans on TLS servers
o Sample of ~10k targets
o Cipher suite: ECDHE-ECDSA-AES128-SHA256
o Make sure server uses an ECDSA key
o Total scan time, less than 24 hours
e About 6k unique signatures dumped in total
o Just a small sample of what’s out there

Minerva datasets

e Public datasets of ECDSA signatures
e We covered these datasets (1 smartcard, 1 TPM, 4 software libraries)
o Athena IDProtect
TPM-FAIL
libgcrypt
MatrixSSL
WolfCrypt
o Simulated
e Each dataset contains 50k signatures, except TPM-FAIL (383k)
o Signatures in a dataset are all generated with the same private key and the same message
e Only sort by timestamp is needed
o Datasets ready for use

o O O O

https://github.com/crocs-muni/minerva

Statistics

400M

350M

300M

250M

200M

150M

100M

Number of public keys

50M

Number of public keys
N w H w (o)}
o o o o o
2 £ = = =

)
g

Amount of Bitcoin public keys by number of signatures (P2PKH transactions, until September 5, 2022)

390.1226M
hareipesih, 5.502195M 2.880357M 1.854713M 1.265642M 921.364k 695.781k 548.918k 445.123k
2 4 6 8 10

Number of signatures

Amount of Ethereum public keys by number of signatures (until October 28, 2022)

33.52735M
20.31909M
8.381431M w 3.105283M 2.218208M 1.760089M 1.373761M 1.134096M
I e ee——
2 4 6

8 10

63.4529M

Number of signatures

Stats

e Bitcoin (P2PKH)

o 424 M unique public keys

o 97% generated less than 4 signatures

o Therest: 12M pubkeys we can try to attack
e Ethereum

o 151 M unique public keys

o 77% generated less than 4 signatures

o Therest: 34M pubkeys we can try to attack

Attack setup

Implementing the attack

Implemented in Sagemath (Python) @ EEQE
Sliding window of size N signatures of the same public key

Multithreaded implementation

Our open source code is on Github:
O

https://github.com/kudelskisecurity/ecdsa-polynomial-nonce-recurrence-attack

Demo

e Attacking a vulnerable TLS server
o Establish multiple TLS connections to server
o Dump signatures, messages and public keys
o Run the attack
o Get the private key

Results

33

Results - Bitcoin and Ethereum

128-core VM
N=5 signatures (quadratic)
Sort signatures by block time
Bitcoin
o Runtime: 2 days and 19 hours
o Retrieved private keys of 773 unique wallets
o All had a zero balance
o Estimated cost: 285 USD

Ethereum

o Did 22% in 48 hours

o Retrieved private keys of 2 unique wallets
o Both had zero balance v
o Estimated cost (for 100%): 900 USD

Turns out they

Polynonce found those but they could also have been found in a different way

Results - TLS, Minerva

e 4-core laptop
N=4,5,6
e TLS
o Runtime: just a few seconds
o Cost: cheap
o Out of our small sample,
o Difficult to find a target where consecutive signatures can be triggered
e Minerva
o Runtime:
m 50k datasets: about 10 minutes each
m TPM-fail: about 70 minutes each
m Total: less than 6 hours
o Cost: cheap
o on the 6 datasets tested

Fun facts

e Where did the stolen Bitcoin go?
o 466 different wallets that received stolen funds
m Top wallet received 75 BTC
Total 144 BTC stolen (9.4M USD at Bitcoin peak)
Vanity addresses used
m Tidiot, 1Kgift, 1dust, THack, etc.
o Tidiot => Tandreas in early 2018
m Andreas Antonopoulos, received over 100 BTC in donations
o Mostly happened between 2014 and 2017
e Bitcointalk forums
o Public talk about stolen funds (2014, 2016) due to repeated nonces
o “Sofar | have collected about 7 BTC.” - forum user, April 2016

38

Conclusions

39

Conclusions

e Make sure nonce generation is not biased
e Safer alternatives to ECDSA that use deterministic nonce generation
o Deterministic ECDSA (RFC 6979)
o EdDSA
e We barely scratched the surface
o Email signatures
o Signed executables
o TLS servers out there '
o Rest of Ethereum and Bitcoin (non-P2PKH)
m + Higher degree relations
o Other blockchains
o Smartcards, constrained devices
o etc.
e It's easy for you to check your own wallet
o No cloud needed

40

Thank you

e For more research from our team SWiss gyb half-half
o Research blog

| |
m More exciting on this topic

e We hope to make people more secure by releasing our code
O

e Questions?

KUDELSKI
SECURITY @

https://research.kudelskisecurity.com
https://research.kudelskisecurity.com/2023/07/11/lattice-free-half-half-attack-on-bitcoin-and-ethereum/
https://github.com/kudelskisecurity

