
Replacing passwords with FIDO2

Nils Amiet June 29, 2020

 2

Who am I?

● Nils Amiet
● Research team @

 3

Passwords are a problem

“62% of breaches involved the use of stolen
credentials, brute force or phishing” - Verizon

“71% of accounts are guarded
by password used on multiple
sites” - TeleSign

“86% of users would like to replace
work-related password with fingerprint
recognition technology if given the
option” – Secret Double Octopus

“There is a consensus on the need to
move away from passwords” -
Forrester

“The vast majority of data breaches are caused
by stolen or weak credentials” - Kaspersky

 4

FIDO2

● Developed by FIDO Alliance
– FIDO = Fast IDentity Online

● 2 specifications
– FIDO2 = WebAuthn + CTAP

● Addresses multiple authentication use cases
– Passwordless (single factor)
– Multi factor (passwordless + PIN or biometrics)
– Second factor (CTAP1 / U2F)

● Backwards compatible with U2F (Universal 2nd Factor) standard

FIDO Alliance founded by:

Today, members also include:

 5

Overview

CTAP2 API WebAuthn API

Server at
domain.comEmbedded or

ejectable
(USB/NFC)

Client device with
web browser

Authenticator Client Relying party (RP)↔ ↔

 6

Purpose of these 2 specifications

● WebAuthn
– For web browsers
– Javascript API

● CTAP (Client To Authenticator Protocol)
– API between client and authenticator

● Standard for all ejectable authenticators

– Messages encoded in Concise Binary Object Representation
(CBOR) format, RFC 7049

– Also for desktop apps, command-line apps

 7

Authenticators

● 2 authenticator types
– Platform authenticator (Embedded/non-ejectable)

● Your smartphone
● Your laptop/desktop

– Roaming authenticator (Ejectable)
● A security key (USB or NFC)
● Many vendors

– Open source: Solo Key, see also: OpenSK

● Entry price about $20 USD

 8

 9

How does it work?

 10

Registration

 11

Registration
1) Serve registration page

that includes JavaScript

 12

Registration
1) Serve registration page

that includes JavaScript

2) User clicks
register button

 13

Registration
1) Serve registration page

that includes JavaScript

2) User clicks
register button

3) Call authenticator

 14

Registration
1) Serve registration page

that includes JavaScript

2) User clicks
register button

4) User presence (UP) check,
User verification (UV) check (optional)

3) Call authenticator

 15

Registration
1) Serve registration page

that includes JavaScript

2) User clicks
register button

4) User presence (UP) check,
User verification (UV) check (optional)

3) Call authenticator

5) Generate scoped key pair,
Store private key,
Return public key +
attestation signature

 16

Registration
1) Serve registration page

that includes JavaScript

2) User clicks
register button

4) User presence (UP) check,
User verification (UV) check (optional)

3) Call authenticator

5) Generate scoped key pair,
Store private key,
Return public key +
attestation signature

 17

Registration
1) Serve registration page

that includes JavaScript

2) User clicks
register button

4) User presence (UP) check,
User verification (UV) check (optional)

3) Call authenticator

5) Generate scoped key pair,
Store private key,
Return public key +
attestation signature

6) Forward to RP

 18

Registration
1) Serve registration page

that includes JavaScript

2) User clicks
register button

4) User presence (UP) check,
User verification (UV) check (optional)

3) Call authenticator

5) Generate scoped key pair,
Store private key,
Return public key +
attestation signature

6) Forward to RP

7) Verify attestation,
Store public key

 19

Authentication

 20

Authentication
1) Serve sign-in page

that includes JavaScript

 21

Authentication
1) Serve sign-in page

that includes JavaScript

2) User clicks
sign-in button

 22

Authentication
1) Serve sign-in page

that includes JavaScript

2) User clicks
sign-in button

3) Call authenticator

 23

Authentication
1) Serve sign-in page

that includes JavaScript

2) User clicks
sign-in button

4) UP + UV checks

3) Call authenticator

 24

Authentication
1) Serve sign-in page

that includes JavaScript

2) User clicks
sign-in button

4) UP + UV checks

3) Call authenticator

5) Return assertion signature

 25

Authentication
1) Serve sign-in page

that includes JavaScript

2) User clicks
sign-in button

4) UP + UV checks

3) Call authenticator

5) Return assertion signature

 26

Authentication
1) Serve sign-in page

that includes JavaScript

2) User clicks
sign-in button

4) UP + UV checks

3) Call authenticator

5) Return assertion signature

6) Forward to RP

 27

Authentication
1) Serve sign-in page

that includes JavaScript

2) User clicks
sign-in button

4) UP + UV checks

3) Call authenticator

5) Return assertion signature

6) Forward to RP

7) Verify assertion,
Authentication successful

 28

Actor
responsibilities

 29

Authenticator main responsibilities

● User presence check
– Tap authenticator

● User verification check (if supported)
– PIN or biometrics
– Yes, UV check is performed client-side (!)

● Generate and store credentials
● Produce signatures (attestations and assertions)

 30

Client main responsibilities

● Act as proxy between authenticator and relying
party

● Few other things
– Example: if multiple accounts

● Implement account selection logic

 31

Relying party main responsibilities

● Verify attestations
● Verify assertions
● Check initial options (UV, ...)
● Store public keys
● Generate and verify challenges (prevent replay attack)
● Make authentication decision:

– Authenticator characteristics and compromise status
– Clone detection

 32

Attestations

 33

Why do we need attestations?

● RP can trust authenticator is what it claims to be by:
– Verifying attestation signature using pre-established chain of

trust

● If trusted, RP can:
– Verify authenticator security level
– Build an authenticator acceptance policy
– Trust authenticity of authenticator data (including UV flag)

 34

What is an attestation signature?

● Attestation is optional (!)
● Signature created during registration
● Signature is computed over:

– Authenticator data (generated public key, AAGUID, UP, UV,
etc.), and

– Hash of client data (challenge, server origin, etc.)

● Multiple attestation types
– Each attestation type provides a different trust model

 35

Attestation types

● Basic attestation
● Self attestation
● Attestation CA (AttCA)
● ECDAA
● None

 36

Basic attestation

● Attestation private key (burned in at factory)
– Attestation certificate (contains public key)
– Also certificate chain

● Privacy vs compromise impact: same attestation private key for ~100’000
authenticators of same model
– Sweet spot for privacy and security
– Ensure users cannot be tracked
– Limit impact in case of attestation key compromise

● Key compromise impact
– Cannot distinguish original authenticators and fake ones using leaked key
– Authenticators registered before compromise are not impacted

 37

Self attestation

● Generate key pair
● Sign using generated private key

– Similar to self-signed certificates

● Does not prove that the authenticator is what it
claims to be (!)
– Only proves ownership of public key

 41

Best attestation type?

● On paper, ECDAA for strict security policies
– Banking, government

● ECDAA secure implementation is non-trivial
● Not every RP requires this security level
● In practice, may use Basic attestation, or not care about attestation at

all
● Does not make a lot of sense to use complex attestation type with

authenticators that do not provide strong protection against physical
attacks

 42

Assertions
(not attestations)

 43

What is an assertion signature?

● Signature created during sign-in
● Produced using generated private key
● Is verified by RP using corresponding public key
● Also computed over:

– Authenticator data
– Hash of client data

● Many possible public key algorithms

 44

APIs overview

 45

WebAuthn operations

● navigator.credentials.create()
● Parameter: PublicKeyCredentialCreationOptions

– Delegates credential creation to authenticator
– Receives attestation in response

● navigator.credentials.get()
● Parameter: PublicKeyCredentialRequestOptions

– Asks authenticator for signature

● Extensions
– appid (compatibility with U2F)
– uvm (RP wants to know which UV method was used)
– ...

 46

CTAP2 operations

● authenticatorMakeCredential
(0x01)
– Generate a new key pair
– Return an attestation signature

and a public key

● authenticatorGetAssertion
(0x02)
– Return an assertion signature

using existing private key

● Other operations

– Get info

– Client PIN

– Reset

– CTAP 2.1 new operations
● Bio Enrollment (e.g. fingerprint)
● Credential management

– Vendor commands: 0x40 to 0xBF

● Extensions

– hmac-secret
● Example: password manager

 47

FIDO Metadata Service
(MDS)

 48

Metadata service

● Authenticator vendors publish info about their product there

– Security features, characteristics

● RPs download entries periodically

– Build trust store using those entries

– Be alerted if product X’s attestation key is compromised

– Must request access token, manually renew yearly

● https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-
20170524/fido-authenticator-metadata-requirements_20170524
.html

https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-metadata-requirements_20170524.html
https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-metadata-requirements_20170524.html
https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-metadata-requirements_20170524.html

 49

What info is there in the MDS?

● List of entries
– AAGUID
– Status reports
– Url of entry =>

download

● Downloaded entry
– Description
– Attestation root certificates
– UV methods
– Key protection
– CryptoStrength
– Supported public key algorithms
– … see FIDO metadata statements

documentation

 50

Security measures

 51

Security measures

● Authenticator cloning detection (signature counter)
● Failed PIN attempts

– 3 failures => must unplug and replug device
● Avoid malicious device locking

– 8 failures => must reset device
● Erases all previously generated keys stored on authenticator

● Scoped credentials
– Keys are linked to an origin (domain) => Avoid fishing

● Physical theft protection (PIN or biometric)

 52

Token Binding

● RFC 8471
● Bind security tokens (e.g session cookie) to a TLS connection

– Prevents session hijacking

● Not really used in practice (!)
– Web browser support is lacking
– Edge (EdgeHTML-based versions) supports it, Chrome dropped support

● WebAuthn: Token binding ID can be specified in client data
● https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/O

kdLUyYmY1E/w2ESAeshBgAJ

https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/OkdLUyYmY1E/w2ESAeshBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/OkdLUyYmY1E/w2ESAeshBgAJ

 53

Adoption

 54

FIDO2 support

● Passwordless use case
– Microsoft.com

● Set user-agent to Edge on Windows

– <Your site here soon>

● 2FA use case
– Many sites
– Easy to upgrade from U2F to FIDO2 2FA

● CTAP2-only
– OpenSSH >= 8.2 supports private keys stored on CTAP2 compatible devices

– ssh-keygen -t ecdsa-sk -O resident

“I-mark” logo can be
displayed to tell users your
service supports FIDO2

 55

WebAuthn

● Chrome
● Firefox
● Safari
● Edge
● Also on mobile

 56

CTAP2

● Android
– USB, NFC

● iOS
– Lightning, NFC (iPhone 7 or later)

● Windows, MacOS, Linux
– USB

 57

Platform Authenticators

● Any Mac with Touch ID (touch bar)
● Any Android 7.0+ smartphone
● Any Windows machine with Windows Hello

 58

Implementation

● Python-fido2
● Many existing libraries on Github

– Both for client and server-side

● Pull entries from Metadata service (!)
● Do not blacklist vendors

– Authenticator acceptance policy should be based on security
characteristics (if any)

– https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide
/WebAuthn_Readiness_Checklist.html

https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Readiness_Checklist.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Readiness_Checklist.html

 59

Is the password problem solved?

 60

Problem solved?

● No need to choose/remember/change
passwords anymore

● Protocol prevents password re-use
● Invulnerable to phishing
● Strong protection against network attacks

 61

Takeaways

 62

FIDO2 best practices

● Make sure to register a backup authenticator
– In case of physical theft, loss, your house burns, etc.
– You won’t be locked out of your account if you have a backup

method to sign-in
– You can sign-in with the backup authenticator and revoke the

stolen authenticator

● Set a PIN or biometric on your authenticator
– The attacker still needs your PIN or fingerprint to sign-in

 63

Password vs PIN

● “But you’re replacing the password
 with a PIN!”

● Password is sent over network and
is vulnerable to all network attacks

● PIN is local
– PIN does not need to be changed as often

● PIN cannot be brute forced
● Alternatively, use biometrics

 64

FIDO2 is still young

● CTAP 2.1 is on the way
● Few websites support passwordless FIDO2

– Please add FIDO2 support to your service
– Use attestations if possible

 65

More resources

● https://research.kudelskisecurity.com
– FIDO2 blog post series

● Live demo
– https://webauthn.io

● https://loginwithfido.com
● https://webauthn.guide
● https://fidoalliance.org/fido2

https://research.kudelskisecurity.com/
https://webauthn.io/
https://loginwithfido.com/
https://webauthn.guide/
https://fidoalliance.org/fido2

 66

Thank you

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

