GPG memory forensics
Nullcon Berlin 2022

\

NULLCON

Who we are

Sylvain Pelissier

Security researcher
Applied Cryptography
Hardware attacks
CTF player
@Pelissier_S

Nils Amiet

Security researcher
Privacy

Data processing at scale
Linux enthusiast

@tmlxs

1PN

GnuPG

e GnuPG (GPG) is an encryption and signature solution implementing the
OpenPGP standard

e Example use cases:
o Email signing
o git commit signing
o Package signing for various Linux distributions: Debian, Arch, RedHat
o SSH authentication with GPG keys

e GnuPG VS-Desktop is now approved[1] by the German government to secure
data at the VS-NfDJ[2] (restricted) level

o [1]

o [2]

https://gnupg.org/blog/20220102-a-new-future-for-gnupg.html
https://de.wikipedia.org/wiki/Geheimhaltungsgrad

File Edit View |Insert Format Options Tools Help

4 Send | A, Spelling v @ Security v [Save v 0 Attach v

o909

Subject ‘ Secret email |

| Paragraph v || Varia..idth v /B 1, T B J U A& iZ i € & =v Bv Ov

This is super secret|

w ¢ O Secretemail = R |
From Mewr Reply|| » Forward O Junk|| @ Delete || Morev

Subject Secret email
To Metr
This is super secret Message Security - OpenPGP

£ Good Digital Signature
This message includes a valid digital signature from your personal key.

Signer key ID: 0x3776BCA053E90C00 { View signer key |

Message Is Encrypted

This message was encrypted before it was sent to you. Encryption
makes it very difficult for other people to view information while it is
traveling over the network.

Your decryption key ID: 0x3776BCAO53E90CO0 (Sub key ID:
Ox11E3F82E465F3BCD)

| View your decryption key |

v ([1attachment: OpenPGP_0x3776BCA053E90C00.asc 3.1KB
| OpenPGP_0x3776BCA053E90C00.asc 3.1KB

Signing commits

sylvain: S git commit -S -m “Fix tests”

Passphrase:

Please enter the passphrase to unlock the
OpenPGP secret key:
"Test key <test@key.com>"
3072-bit RSA key, ID 6F2C79C919966FC1,
created 2021-07-21.

&

Save in password manager

Cancel OK

GPG agent

gpg-agent is a daemon managing secret keys

It is used as a backend by GPG

Communication is done with the client using the text-based Assuan Protocol
The secret keys are encrypted and cached in RAM by gpg-agent such that
passphrases are asked only once

Previous work: GPG Reaper

e In GPG versions prior to 2.2.6, the creation time of cached items was not
checked if no gpg-agent action was performed.

e GPG cache items may stay in memory until a new GPG action is performed

e Debug mode allow to read passphrase in cache.

https://github.com/kacperszurek/gpg_reaper

Previous work: GPG Reaper

sylvain:~/gpg/$ gpg --debug-level guru -d clear.gpg

gpg: DBG: chan_4 GETINFO cmd_has_option GET_PASSPHRASE repeat

gpg: DBG: chan_4 (0] ¢

gpg: DBG: chan_4 GET_PASSPHRASE --data --repeat=0 -- S9319569F117FE96D X X Enter+passphrase%0A
gpg: DBG: chan_4 D testpassword
gpg: DBG: chan_4 0K

GPG threat model

gnupg/agent/cache.c

39 /*
40
41
42
43
44
45
46
47

The encryption context. This is the only place where the

encryption key for all cached entries is available. It would be nice
to keep this (or just the key) in some hardware device, for example

a TPM. Libgcrypt could be extended to provide such a service.

With the current scheme it is easy to retrieve the cached entries

1f access to Libgcrypt's memory is available. The encryption

merely avoids grepping for clear texts in the memory. Nevertheless
the encryption provides the necessary infrastructure to make it

more secure. */

48 static gcry_cipher_hd_t encryption_handle;

AES key wrap

First of the six iterations:

IV
e i EEEEEEEN |F|,[|2|]1 |
EEENNEENENEENENE e IIIIIII'IIIIIIII Counter [)

Y 00000001 _>€? 00000002 —»6?

Key — AES Key — AES Key — AES

Y y (
LITTTTITTITTIIT T (LTI rrry HREEEERENEENENEE

R[O] RI1] R[2]

Memory encryption

Cache items are encrypted in memory with AES key wrap mode.
Key is randomly generated when gpg-agent starts.

The key is stored somewhere in memory in clear.

Let's see the memory ...

Libgcrypt memory

39 [0x0698f2f0]> px 80

40 - offset - 01 23 45 67 89 AB CD EF 0123456789ABCDEF
41 0x0698f2f0 0000 0000 0000 0000 0000 0000 0000 0000

42 0x0698f300 abab abab abab abab 7665 7279 6¢c6T 6e67

43 0x0698f310 abab abab abab abact 0000 0000 0000 0000

44 0x0698f320 0000 0000 O0000 OO0 0000 0000 0000 0000

45 0x0698f330 0000 0000 0000 0000 0000 0000 0000 0000

Wait ! Memory should be encrypted ?

GnuPG bug report

First 8 bytes of passphrase are not cleared from memory

Libgcrypt AES key wrap implementation was not cleaning properly its stack.
Bug reported to GnuPG:

Fixed in Libgcrypt 1.8.9 (2022-02-07):

https://dev.gnupg.org/T5597
https://dev.gnupg.org/T5467

Passphrase retrieval

GPG memory structure
gnupg/agent/cache.c

51 struct secret_data_s {

52 int totallen; /* This includes the padding and space for AESWRAP. */
53 char data[l]; /* A string. */

54 };

55

56 /* The cache object. */

57 typedef struct cache_item_s *ITEM;

58 struct cache_item_s {

59 ITEM next;

60 time_t created;

61 time_t accessed; /* Not updated for CACHE_MODE_DATA */

62 int ttl; /* max. lifetime given in seconds, -1 one means infinite */

63 struct secret_data_s *pw;

64 cache_mode_t cache_mode;

65 int restricted; /* The value of ctrl->restricted is part of the key. */
66 char key[1];

Searching timestamp

e Cache item structure has two timestamps created and accessed of type
time _t
We can estimate the creation time and search for such pattern

e Time to live is by default 10 minutes (0x258 seconds)
For example the regexp:

.{3}\x61\x00\x00\x00\x00.{3}\x61\x00\x00\x00\x00\x58\x02

matches timestamps created after July 27, 2021 12:45:52 PM and before
February 6, 2022 5:06:08 PM with a time to live of 10 minutes.

e \We check that created <= accessed.

Searching timestamp

[0x00000000]> /x 6100000000 61000000005802
Searching 18 bytes in [0x0-0x3fc5b0a0]

hilts: 3

0x2cf8ad4b8 hit0_0 fc3baf61000000002¢64af61000000005802
0x2cf8a548 hit0_1 143caf61000000002¢64af61000000005802

0x2cf8a5d8 hit0_2 4764af61000000004c64af61000000005802

[0x00000000]> px @ hit0_2

- offset - 01 23 45 67 89 AB CD EF 0123456789ABCDEF
0x2cf8a5d8 4764 af6l 0000 0000 4c64 af6l 0000 0000

0x2cf8a5e8 5802 0000 0000 0000 b024 0048 bO7f 0000

0x2cf8a5f8 0300 0000 0000 0000 5331 3239 4641 3336

0x2cf8a608 4244 3030 4144 4332 4500 0000 0000 0000

Searching AES key

e We have a way to find the encrypted cached items.
e How do we find the AES key in memory to unwrap the cached item ?

Searching AES key

Subkey[0]

schedule

12

13

ANl A A

10 14

k3 I<7 k11 I<15

o
o
S
=
S
=

Lo_
A

J:

SubWord

Rcon

i

Subkey[1]

Nar yan Var an
N N N W
mEEn II.IIIIII‘IIIII.III‘I.I.I

- k
- k
- k
Ko K, s K, -

'llIIPIIIIIIllllllllllllllrllllllll_lﬁll

16 24

17 25 9

ANl AN
ANl Al AN

28
2
k30

18 26

k
k
k

<

! ! ! !

Searching AES key schedule

SN 3| Q| /| = .
/JK N X X V4
© o = = SN I Q S N 5
MY | X |Xx | Xx U/ XY |X | X |Xx
<| w| o - < | Y| 2.
X | |x | x NI X |~ |x | x

<
<

RotWord

o | oo | v B X 2| S| =
Y X | X | Xx fK T | X | X | Xx g
© o = = SN I aQ < N 5
MY | X |Xx | Xx U/ XY |X | X |Xx

Searching AES key schedule

<
<

RotWord
r
SubWord
4

VAR

LV

Y

k28

k30

k31

JV

\J

<
<

¢

Searching AES key schedule

V\
\

kZO

k21

k22

k23

k16

<

vd
\

k17

k18

k‘l9

RotWord

Searching AES key schedule

Cache item recovery and decryption

Cache item structure is found with the regular expression.
AES wrap key is found in memory.

Cache item is decrypted and integrity is checked.

If the key is valid the passphrase is found and correct.

Practical implementations

Volatility

e \olatility3 open-source framework, used for extracting information from
system memory dumps (RAM)
e Use cases
o Forensics investigation
m Secret key recovery
m Get commands history (e.g. Bash history)
o Malware analysis
o Investigate snapshot of running system (processes, sockets, ...)

m Can investigate status at any time, even if original system is shutdown
e Plugin system

Volatility plugin example: Bitlocker key recovery

e Bitlocker: Microsoft’s official full disk encryption solution for Windows

e Once a Bitlocker volume is mounted, the Full Volume Encryption Key (FVEK)
is kept in memory.

e Also copied if the system goes into hibernation.

e Marcin Ulikowski wrote a Volatility plugin to search AES keys in a process’
memory:

e Uses AES key finding method presented before

https://github.com/elceef/bitlocker

Volatility plugin example: Bitlocker

39 $ vol -f john_win81_x86.raw --profile Win81lU1lx86 bitlocker
40 Volatility Foundation Volatility Framework 2.5

41

42 Address : 0x872db068

43 Cipher : AES-128

44 FVEK : 48286dcd34d3ff215d705d68c5df4f08

Volatility3 plugins

e Plugin 1: Retrieve (partial) GPG key passphrase (up to 8 characters)
e Plugin 2: Retrieve full passphrase and plaintext (no size limit)
e Both published as open-source here:

https://github.com/kudelskisecurity/volatility-gpg

Demo time

Demo - Partial passphrase retrieval

—[16:05:10]-[nils ~/work/gpg-talk/volatility]
L>¢ ~/git/volatility3/vol.py -f memdump-gpg-verylongpassphrasestarexclexcl -s symbols/ -p ~/git/gpg-

mem-forensics/volatility-gpg/ linux.gpg_partial

Volatility 3 Framework 2.0.0
Progress: 100.00 Stacking attempts finished

0ffset Partial GPG passphrase (max 8 chars)

0x7fb04caee2ad verylong

Demo - Full passphrase retrieval

—[16:05:22]-[nils ~/work/gpg-talk/volatility]

L>¢ ~/git/volatility3/vol.py -f memdump-gpg-verylongpassphrasestarexclexcl -s symbols/ -p ~/git/gpg-mem-
forensics/volatility-gpg/ linux.gpg_full --fast

Volatility 3 Framework 2.0.0

Progress: 100.00 Stacking attempts finished
0ffset Private key Secret size Plaintext

0x7fb048002578 788dc61976e3ac8e9el10d7b80b3e7b40 32 verylongpassphrasex!!
0x7fb048002578 788dc61976e3ac8e9e10d7b80b3e7b40 32 verylongpassphrase*!!

Use cases

Use case - Digital forensics investigation

e Police raid, physical access to unlocked running computer.

o Or virtual machine is seized from a server.
e Suppose that police dumps memory contents of running computer.
e They can copy private key files.

e Later analyzes memory dump to extract GPG key passphrase.
o Uses passphrase to unlock private key

Use case - Ransomware countermeasure

e Existing ransomware based on GPG:
o KeyBTC, VaultCrypt, Qwerty

e These ransomware rely on public key encryption only.

e Private key is never used for decryption during infection
o Therefore, never stored in cache.

e However, a ransomware may use symmetric key encryption for encrypting
files faster (session key), and public key encryption to encrypt that session
key (master key).

o Inthat case, the symmetric key stays in GPG cache and can be retrieved

Example ransomware

#!/usr/bin/env bash

echo -e $master_pub_key | gpg --import

SESSION_KEY="strings /dev/urandom | grep -o '[[:alnum:]]' | head -n 16 | tr -d '\n'’

echo $SESSION_KEY > session_key.txt

gpg -r "GPGCryptOr" -o session_key.gpg -e session_key.txt

shred -u session_key.txt

echo $SESSION_KEY | gpg --batch --yes -o ciphertext.txt.gpg --session_key-fd 0 --symmetric --cipher-
algo AES256 cleartext.txt

unset SESSION_KEY

shred -u cleartext.txt

Conclusions

e Cleaning memory from sensitive data is hard and should be tested.

e GnuPG already implements some form of memory protection.

e Protecting keys against memory forensics requires secure enclaves or
Trusted Platform Module (TPM).

Thank you! Questions?

