
GPG memory forensics
Nullcon Berlin 2022



Who we are

Sylvain Pelissier

● Security researcher
● Applied Cryptography
● Hardware attacks
● CTF player
● @Pelissier_S

Nils Amiet

● Security researcher
● Privacy
● Data processing at scale
● Linux enthusiast
● @tmlxs 



GnuPG

● GnuPG (GPG) is an encryption and signature solution implementing the 
OpenPGP standard

● Example use cases:
○ Email signing
○ git commit signing
○ Package signing for various Linux distributions: Debian, Arch, RedHat
○ SSH authentication with GPG keys

● GnuPG VS-Desktop is now approved[1] by the German government to secure 
data at the VS-NfD[2] (restricted) level

● [1] https://gnupg.org/blog/20220102-a-new-future-for-gnupg.html
● [2] https://de.wikipedia.org/wiki/Geheimhaltungsgrad

https://gnupg.org/blog/20220102-a-new-future-for-gnupg.html
https://de.wikipedia.org/wiki/Geheimhaltungsgrad


Signing emails



Verifying emails



Signing commits
sylvain:~/gpg/$ git commit -S -m “Fix tests”



GPG agent

● gpg-agent is a daemon managing secret keys
● It is used as a backend by GPG
● Communication is done with the client using the text-based Assuan Protocol
● The secret keys are encrypted and cached in RAM by gpg-agent such that 

passphrases are asked only once



Previous work: GPG Reaper

● In GPG versions prior to 2.2.6, the creation time of cached items was not 
checked if no gpg-agent action was performed.

● GPG cache items may stay in memory until a new GPG action is performed
● Debug mode allow to read passphrase in cache.
● https://github.com/kacperszurek/gpg_reaper

https://github.com/kacperszurek/gpg_reaper


Previous work: GPG Reaper



GPG threat model
gnupg/agent/cache.c



AES key wrap

First of the six iterations:



Memory encryption

● Cache items are encrypted in memory with AES key wrap mode.
● Key is randomly generated when gpg-agent starts.
● The key is stored somewhere in memory in clear.
● Let’s see the memory …



Libgcrypt memory

Wait ! Memory should be encrypted ?



GnuPG bug report

● First 8 bytes of passphrase are not cleared from memory
● Libgcrypt AES key wrap implementation was not cleaning properly its stack.
● Bug reported to GnuPG: https://dev.gnupg.org/T5597
● Fixed in Libgcrypt 1.8.9 (2022-02-07): https://dev.gnupg.org/T5467

https://dev.gnupg.org/T5597
https://dev.gnupg.org/T5467


Passphrase retrieval



GPG memory structure
gnupg/agent/cache.c



Searching timestamp

● Cache item structure has two timestamps created and accessed of type 
time_t

● We can estimate the creation time and search for such pattern
● Time to live is by default 10 minutes (0x258 seconds)
● For example the regexp:

.{3}\x61\x00\x00\x00\x00.{3}\x61\x00\x00\x00\x00\x58\x02

matches timestamps created after July 27, 2021 12:45:52 PM and before 
February 6, 2022 5:06:08 PM with a time to live of 10 minutes.

● We check that created <= accessed.



Searching timestamp



Searching AES key

● We have a way to find the encrypted cached items.
● How do we find the AES key in memory to unwrap the cached item ?



Searching AES key schedule



Searching AES key schedule



Searching AES key schedule



Searching AES key schedule



Searching AES key schedule



Cache item recovery and decryption

● Cache item structure is found with the regular expression.
● AES wrap key is found in memory.
● Cache item is decrypted and integrity is checked.
● If the key is valid the passphrase is found and correct.



Practical implementations



Volatility

● Volatility3 open-source framework, used for extracting information from 
system memory dumps (RAM)

● Use cases
○ Forensics investigation

■ Secret key recovery
■ Get commands history (e.g. Bash history)

○ Malware analysis
○ Investigate snapshot of running system (processes, sockets, …)

■ Can investigate status at any time, even if original system is shutdown
● Plugin system



Volatility plugin example: Bitlocker key recovery

● Bitlocker: Microsoft’s official full disk encryption solution for Windows
● Once a Bitlocker volume is mounted, the Full Volume Encryption Key (FVEK) 

is kept in memory.
● Also copied if the system goes into hibernation.
● Marcin Ulikowski wrote a Volatility plugin to search AES keys in a process’ 

memory: https://github.com/elceef/bitlocker
● Uses AES key finding method presented before

https://github.com/elceef/bitlocker


Volatility plugin example: Bitlocker



Volatility3 plugins

● Plugin 1: Retrieve (partial) GPG key passphrase (up to 8 characters)
● Plugin 2: Retrieve full passphrase and plaintext (no size limit)
● Both published as open-source here: 

https://github.com/kudelskisecurity/volatility-gpg

https://github.com/kudelskisecurity/volatility-gpg


Demo time



Demo - Partial passphrase retrieval



Demo - Full passphrase retrieval



Use cases



Use case - Digital forensics investigation

● Police raid, physical access to unlocked running computer.
○ Or virtual machine is seized from a server.

● Suppose that police dumps memory contents of running computer.
● They can copy private key files.
● Later analyzes memory dump to extract GPG key passphrase.

○ Uses passphrase to unlock private key



Use case - Ransomware countermeasure

● Existing ransomware based on GPG:
○ KeyBTC, VaultCrypt, Qwerty

● These ransomware rely on public key encryption only.
● Private key is never used for decryption during infection

○ Therefore, never stored in cache.
● However, a ransomware may use symmetric key encryption for encrypting 

files faster (session key), and public key encryption to encrypt that session 
key (master key).

○ In that case, the symmetric key stays in GPG cache and can be retrieved



Example ransomware



Conclusions

● Cleaning memory from sensitive data is hard and should be tested.
● GnuPG already implements some form of memory protection.
● Protecting keys against memory forensics requires secure enclaves or 

Trusted Platform Module (TPM).



Thank you! Questions?


