
Security keys workshop

Sylvain Pelissier
Nils Amiet

November 24, 2023

Who are we?

● Nils Amiet
○ Security researcher
○ Authentication
○ Data processing at scale
○ Linux enthusiast

● Sylvain Pelissier
○ Security researcher
○ Applied Cryptography
○ Hardware attacks
○ CTF player
○ @ipolit@mastodon.social

●

2

Introduction

3

Workshop goals

● Why should I use a security key?
● What is a secure key used for?
● Which security key should I use?

4

The password problem

● Difficult to remember
● Re-use across services leads to “credential stuffing”
● Phishing
● Computer or password manager breach

5

What’s a security key?

● An isolated secure element or
microcontroller performing only
Cryptography operations

● Security keys can be used in a
variety of uses cases to mitigate the
password problem
○ Let’s go through some of these

6

Set-up

7

Set-up

● Materials available at: https://t.ly/FeAwy
● A virtual machine is available there:

○ username: user
○ password: changeme

● Slides
● All the commands are in a VM file in folder

~/workshop or at the link above.

8

https://drive.google.com/drive/folders/1_Gc52lRCybhOnre6xuFwXbq2CEq3MaPD?usp=drive_link

Use case: 2FA
Security key as a second factor

9

Two-factor authentication (2FA)

● Generally in addition to a password to avoid a single point of failure.
● It can be a SMS on a mobile phone, an authenticator application, a TPM, or a

security key.
● The advantage of security key is to have a separated device less prone to be

breached.

10

OATH, HOTP, TOTP

● OATH (Initiative for Open Authentication)
○ HOTP: HMAC-based
○ TOTP: Time-based

● A one time code generated by another device.
● Used as a second factor together with a password.
● It is unlikely that both devices will be compromised at the

same time.
● Recommended Android application: Aegis Authenticator

○ Open-source and easy backups.
● Other solutions: Google Authenticator, FreeOTP, Authy, etc.

11

https://getaegis.app/

HOTP: HMAC-Based One-Time Password Algorithm

● Defined in RFC 4226
● Less used in practice
● Both the client and the server share a secret key or seed.
● Server sends a challenge value C (for example a counter)
● Client answer by:

HOTP(Key, C) = Truncate(HMAC-SHA-1(Key, C))

● The result of truncate is a for example a 6-digit number.

12

TOTP: Time-Based One-Time Password Algorithm

● Defined in RFC 6238
● Both the client and the server share a secret key or seed.
● Server use as a challenge value T the current time (Unix

epoch) in steps of 30 seconds.
● Client sends:

TOTP(Key, T) = Truncate(HMAC-SHA-1(Key, T))

● The result of truncate is a 6-digit number.
● Check online:

https://www.token2.com/site/page/totp-toolset

13

https://www.token2.com/site/page/totp-toolset

TOTP with security key

● The advantage of using a security key for TOTP is that the secret key never
leaves the security key

● The drawback is that if you lose your security key you may be locked out of
your account

● On Yubikeys you can set-up up to 32 accounts.
● Can be used together with a mobile application (Then secure as the weakest

link)
● Some software TOTP also exist like : totp-cli

14

https://github.com/yitsushi/totp-cli

TOTP with security key

Prerequisites for Yubikeys:

PCSC tools and screenshot:

Install Yubico Authenticator

● Get latest version from
https://www.yubico.com/products/yubico-authenticator/

15

$ sudo apt install pcscd gnome-screenshot

$ tar -xvf yubico-authenticator-latest-linux.tar.gz

$ cd yubico-authenticator-6.3.0-linux/

$./authenticator

https://www.yubico.com/products/yubico-authenticator/

TOTP with security key (Arch)

Prerequisites for Yubikeys:

PCSC tools and screenshot:

Install Yubico Authenticator:

16

$ sudo pacman -S pcsc-tools gnome-screenshot

$ sudo systemctl enable --now pcscd

$ cd workshop

$ tar -xvf yubico-authenticator-latest-linux.tar.gz

$ cd yubico-authenticator-6.3.0-linux/

$./authenticator

TOTP with security key

● Go to
https://authenticationtest.com/totpChallenge/

● Add an account in authenticator:
○ Scan QR code
○ Or enter code manually

17

https://authenticationtest.com/totpChallenge/

TOTP with security key

● Go to
https://authenticationtest.com/totpChallenge/

● Add an account in authenticator:
○ Scan QR code
○ Or enter code manually

● Use the TOTP to login.
● Check that the code changes every 30 seconds

18

https://authenticationtest.com/totpChallenge/

Yubikey Manager

Install Yubikey Manager

19

$ sudo apt install yubikey-manager

$ ykman info
Device type: YubiKey 4
Serial number: 5409811
Firmware version: 4.3.4
Enabled USB interfaces: OTP, FIDO, CCID

…

Yubikey Manager

Install Yubikey Manager (Arch)

20

$ sudo pacman -S yubikey-manager

$ ykman info
Device type: YubiKey 4
Serial number: 5409811
Firmware version: 4.3.4
Enabled USB interfaces: OTP, FIDO, CCI

TOTP on the command line

Create TOTP account:

21

$ ykman oath accounts add test

Enter a secret key (base32): I65VU7K5ZQL7WB4E

$ ykman oath accounts code
test 389685
totp@authenticationtest.com 389685

Get TOTP codes:

Your turn now…

● Github
● Gitlab
● Gmail
● YesWeHack
● Wordpress
● X (Twitter)

A complete list of supported services is here: https://www.dongleauth.com/

22

https://www.dongleauth.com/

Backup and disaster recovery

Backup your keys ! A mobile app can be a backup of security key.

Be careful of fall-back settings…

23

Use case: Passkeys/FIDO2
Security key as a 1st factor

24

Passkeys

● A new way to sign in to apps and websites
● Sign in the same way you unlock your device

○ Face scan, fingerprint, screen lock PIN
● The first factor is now an “authenticator”

○ Not a password anymore
○ The authenticator can be a smartphone, a

laptop, etc.
○ But it can also be a security key

25

Passkeys (continued)

● Passkeys are built with FIDO2
○ FIDO2 = WebAuthn + CTAP2
○ WebAuthn: specification for web browsers
○ CTAP2: specification for Client <-> Authenticator communication

(USB, NFC)
● Web browser must support WebAuthn Javascript API

○ Supported by all major web browsers
● Authenticator must support CTAP2

○ Supported by all “FIDO2-compatible” security keys

26

Remember FIDO2?

● Previously: U2F (2014)
○ Designed for 2nd factor only

● Previously: FIDO2 (2019)
○ Passkey was locked to the device it was generated on

● Passkeys (October 2022)
○ Passkey = FIDO2 + More intuitive user experience

● But what’s different/new?
○ Cloud synchronized keys

■ Android: Google Password Manager + 3rd party (14+)
■ iOS: iCloud Keychain + 3rd party (17+)

○ Cross-device authentication (CDA)
○ Third-party passkey providers
○ Strongest attempt so far to achieve large-scale adoption of a

replacement for passwords
27

How it works (simplified)

● Registration
○ Generate key pair
○ A) Store private key on device (resident credential)

■ Uses space on the device
○ B) Offload storage to website/app

■ Simplified: key is encrypted using master key
■ [-] Cannot do “username-less” scenario
■ [+] Unlimited storage

○ Website stores public key
● Login

○ Generate signature with private key
○ Website verifies signature with public key

28

Passkeys: phishing resistance

● Credentials can only be used with the website they were
generated for

○ Enforced at the protocol level
● Registration

○ Website URL is computed via browser internal API
○ URL is stored alongside credentials

● Login
○ Website URL is computed via browser internal API
○ Browser asks authenticator if credentials for this URL

exist
● This completely eliminates phishing attacks

○ Unless browser exploit exists!
● Also: breach resistance… or is it really? :)

○ What about cloud-synchronized passkeys?

29

Are passkeys replacing security keys?

● No
● You may not want to sync your passkeys in the cloud

○ Device-bound passkey
○ Keep the passkey on a security key, offline

● You may need Authenticator Assurance Level 3 security (AAL3)
○ https://pages.nist.gov/800-63-3-Implementation-Resources/63B

/AAL/
● It can be used as a backup, in case you lose access to all your other

passkey devices

30

https://pages.nist.gov/800-63-3-Implementation-Resources/63B/AAL/
https://pages.nist.gov/800-63-3-Implementation-Resources/63B/AAL/

Disaster recovery

● Example: Passkey stored on smartphone
● Smartphone becomes unavailable (stolen, lost, broken)
● Are you locked out of your account forever?
● No, fallback method can be used

○ Password + 2nd factor (security key, TOTP, SMS, recovery code,
etc.)

○ Backup passkey on a security key
○ Cloud-synced passkey with biometrics (test it first!)

● Make sure to setup a fallback method
○ Don’t get locked out

31

Device support

● It’s still very new
● Being rolled out to major OSes and web browsers
● https://passkeys.dev/device-support/

32

https://passkeys.dev/device-support/

Managing your FIDO2 security key

● Chrome settings
○ Settings > Privacy and security > Security > Manage security keys
○ Direct link: chrome://settings/securityKeys
○ List/delete credentials
○ List/enroll/delete fingerprints
○ Set/change PIN
○ Reset security key

● To set fingerprints, use ctapcli if Chrome doesn’t work
○ (installs to ~/.cargo/bin)

● Alternative: fido2-token from the “libfido2” package (Ubuntu: fido2-tools)
● Not as intuitive to use

● Yubico tools, such as ykman-gui, are locked to products from that vendor only

33

$ cargo install ctap-hid-fido2 --example ctapcli

$ ctapcli bio -h

Managing your FIDO2 security key (continued)

34

$ ctapcli info

- versions = ["U2F_V2", "FIDO_2_0", "FIDO_2_1_PRE"]

- extensions = ["credProtect", "hmac-secret"]

- aaguid(16) = 8876631BD4A0427F57730EC71C9E0279

- options = [("rk", true), ("up", true), ("plat",
false), ("credMgmt", true), ("clientPin", false)]

$ ctapcli cred

PIN:

Enumerate discoverable credentials.

- existing discoverable credentials: 1/49

- rp: (id: webauthn.io, name: test)

 - credential: (id: 6447567A6441, name: test, display_name: test)

References

● https://passkeys.dev/
● https://developer.apple.com/passkeys/
● https://fidoalliance.org/white-paper-multi-device-fido-credentials/
● https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordMan

ager.html
● https://web.dev/articles/passkey-registration
● https://www.passkeys.io/
● https://webauthn.me/debugger
● https://www.eff.org/deeplinks/2023/10/what-passkey
● https://www.imperialviolet.org/2023/07/23/u2f-to-passkeys.html
● https://www.imperialviolet.org/2022/09/22/passkeys.html
● https://developers.yubico.com/Passkeys/

35

https://passkeys.dev/
https://developer.apple.com/passkeys/
https://fidoalliance.org/white-paper-multi-device-fido-credentials/
https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordManager.html
https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordManager.html
https://web.dev/articles/passkey-registration
https://www.passkeys.io/
https://webauthn.me/debugger
https://www.eff.org/deeplinks/2023/10/what-passkey
https://www.imperialviolet.org/2023/07/23/u2f-to-passkeys.html
https://www.imperialviolet.org/2022/09/22/passkeys.html
https://developers.yubico.com/Passkeys/

Exercise

● Go to https://WebAuthN.io
● Register
● Authenticate
● Try with

○ 1) Laptop: security key
○ 2) Smartphone: internal passkey
○ 3) Laptop: Cross-device authentication

■ Login to Chrome
■ Turn on bluetooth
■ Login with passkey stored on smartphone, but from laptop

36

https://webauthn.io

Your turn now…

● https://passkeys.directory/
● Github
● Google
● Microsoft
● Apple
● Nintendo
● NextCloud (Up to your provider)

37

https://passkeys.directory/

Use case: Static password

38

Yubikey slots

39

$ ykman otp info
Slot 1: programmed
Slot 2: programmed

● There are 2 slots for shared applications (on Yubikey)
○ Yubico OTP
○ HMAC-based OTP (OATH HOTP)
○ Static password
○ Challenge-response (HMAC-SHA1 or Yubico OTP algorithms)

Yubikey slots

● Short touch the Yubikey’s round part,
it will type the value stored in slot 1
as a keyboard

● For Raspberry Pi Pico it is the “Boot”
button

● Long touch (about 3 seconds) will
type the value in slot 2

40

Static password

● Use cases
○ Arbitrary string you type often
○ Passwords on devices where it’s slow to type

■ Netflix on vacation TV
■ Apple TV
■ Game console

● Make sure to set higher intra-character pacing
● If storing passwords

○ Only store a part of the password in the OTP slot
○ Type the rest manually
○ Someone who steals your security key doesn’t get your full password
○ Example: myPa$$word76

■ Type manually: myP
■ Store: a$$word76

41

Static password setup (Yubikey)

● By default, can only store modhex data, to be compatible with all keyboard layouts
○ These 16 characters are allowed only: cbdefghijklnrtuv
○ Make sure to pass “-k fr” keyboard layout to enable use of additional characters

● Yubikey 4: max length = 38 modhex characters per OTP slot
● Store secret

● Generate secret

● Print secret
○ Short touch the Yubikey’s round part, it will type the value stored in slot 1 as a keyboard
○ Long touch (about 3 seconds) will type the value in slot 2

42

$ ykman otp static -k fr <slot number>

$ ykman otp static --length 24 --generate <slot number>

Intra-character pacing, final Enter keystroke

● On game consoles, the pacing at which keystrokes are typed may be too fast
○ Some keys may not be registered correctly

● You may not want to send a final Enter either
● Change the OTP slot settings:

● Pacing: number of milliseconds between each keystroke (default=0)
○ Possible values: 0, 20, 40, 60

● --no-enter: Do not send an Enter keystroke after slot output (default=type enter)

43

$ ykman otp settings --pacing <pacing> --no-enter <slot number>

Use case:
Sudo with a security key

44

Prerequisites

Install libpam-u2f (Ubuntu):

45

$ sudo apt-get install libpam-u2f

$ sudo pacman -S pam-u2f

Install libpam-u2f (Arch):

Sudo configuration

Associate the key with your account:

46

$ mkdir -p ~/.config/Yubico

$ pamu2fcfg > ~/.config/Yubico/u2f_keys

Enter PIN for /dev/hidraw2:

$ sudo nano /etc/pam.d/sudo

Sudo configuration

Edit permissions in /etc/pam.d/sudo at the beginning of the file:

required means password AND security key.

sufficient means password OR key.
47

#%PAM-1.0

auth required pam_u2f.so cue [cue_prompt=Tap your security key]

Set up user limits from /etc/security/limits.conf.

…

Sudo configuration

Test it works:

Warning when using “required”: if you lose your security key, you can no longer use
sudo !

Recommended to register multiple security keys in case one is lost with:

48

$ sudo echo test

Tap your Yubikey

[sudo] password for user:

test

$ pamu2fcfg -n >> ~/.config/Yubico/u2f_keys

Sudo configuration

Test:

When using “sufficient” it falls back to password if no security key is detected.

49

$ sudo echo test

Tap your Yubikey

test

Use case:
Login to Linux with a security key

50

Login configuration

Edit permission in /etc/pam.d/gdm-password (Gnome) or sddm (KDE):

required means passwords AND security key.

sufficient means password OR key.

51

#%PAM-1.0

auth required pam_u2f.so cue [cue_prompt=Tap your security key]

Set up user limits from /etc/security/limits.conf.

…

Login with security key

Test 1FA

52

Login with security key and password

Test 2FA

53

Login with security key and PIN

Configuration to request the security key PIN

54

$ pamu2fcfg -N > ~/.config/Yubico/u2f_keys

Enter PIN for /dev/hidraw2:

Login with security key and PIN

Test 2FA

55

Risk analysis

Sufficient: Add no security, maybe decrease security. Think if someone steal you
laptop and your key.

Required: Add a second factor for example the PIN. Think of what happen if you
lose your key.

Warning: It does not configure the TTY terminals ! Once you are ready:

56

#%PAM-1.0

auth required pam_u2f.so cue [cue_prompt=Tap your security key]

$ sudo nano /etc/pam.d/common-auth

Use case: SSH over FIDO2
Your SSH key on a security key

57

SSH use case

● Requires OpenSSH 8.2 or later (released Feb 2020)
● Generate a portable SSH key to be stored on a FIDO2 security key:

● This will create
○ ~/.ssh/id_ecdsa_sk (private key handle*)
○ ~/.ssh/id_ecdsa_sk.pub (public key)

● The private key handle* cannot be used by itself, it still requires the
security key to be present
○ It’s a pointer to the actual private key, stored on the security key

58

$ ssh-keygen -t ecdsa-sk -O resident

SSH use case (continued)

● Later, on another computer, load the resident key:
● 2 options

● Note: option A requires ssh-agent running and setup
● Then SSH into your machine as usual

For A)

For B)

59

$ ssh-add -K

$ ssh-keygen -K

$ ssh user@host

A) Load key into ssh-agent

B) Save key to file on disk

—>

—>

$ ssh user@host -i ~/.ssh/id_ecdsa_sk

Use cases

● SSH authentication
● Sign git commits with your SSH key (yes, SSH key, not PGP key)

○ https://docs.github.com/en/authentication/managing-commit-signature-verifi
cation/telling-git-about-your-signing-key#telling-git-about-your-ssh-key

60

https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key

Exercise

● The following SSH server can be used for this exercise:
○ Host: hostname
○ Username: ph0wn
○ Password: ph0wn-security-key-workshop
○ Port: 22

● Generate an SSH key on your FIDO2 security key
● Add the public key to the SSH server’s authorized_keys file

● From your own machine, SSH into the server with pubkey authentication

● Check that the SSH key on the security key is really portable
○ From another machine, SSH into the server with your security key

61

$ ssh-copy-id -i ~/.ssh/id_ecdsa_sk.pub username@hostname

$ ssh username@hostname

$ ssh-keygen -t ecdsa-sk -O resident

 $ ssh-add -K

or $ ssh-keygen -K

Reminder:

Disk encryption with FIDO2

62

Disk encryption

Requirements:

● FIDO2 security key with 'hmac-secret' extension
● Recent OS

Prerequisites:

Format disk:

63

$ sudo apt install cryptsetup

$ sudo cryptsetup luksFormat /dev/sdb

$ sudo cryptsetup open /dev/sdb encrypted

$ sudo mkfs.ext4 /dev/mapper/encrypted

$ sudo umount /media/user/<disk-id>

$ sudo cryptsetup close encrypted

Partition encryption

64

$ sudo systemd-cryptenroll --fido2-device=auto --wipe-slot=all /dev/sdb

$ sudo cryptsetup open --token-only /dev/sdb encrypted

Enroll security key:

Add to the boot: edit /etc/crypttab

<target name> <source device> <key file> <options>

encrypted /dev/sdb - fido2-device=auto

Open partition with the security key:

Boot

65

Comparison of security keys

66

Hardware

67

Microcontroller
● General purpose CPU
● Not design for security
● No HW attacks protection

Secure element
● Limited Functionality
● Isolation and designed for security
● May have an Evaluation Assurance

Level (EAL)

Is the secure element used ?

68

Hardware Comparison

● Main possibilities:
○ Yubikey 5 : Infineon SLE78CLUFX5000 secure element (CC EAL6+)
○ Google Titan/Feitian Key: NXP A7005 secure element (CC EAL5+)
○ Ledger Nano X: ST31H320 or ST33J2M0 secure element (CC EAL5+)
○ Ledger Nano S: ST31 (CC EAL5+)
○ Nitrokey 3: Warning: keys stored in internal flash at the moment (Secure

element not used)
○ Solokeys Solo 1: STM32L432 microcontroller
○ Solokeys Solo 2: NXP LPC55S69 microcontroller
○ Token2: Unknown hardware
○ TrustKey: eWBM MS500 microcontroller

69

More on FIDO2 hardware

70

Features to look for

● USB-C or USB-A
● NFC support
● TOTP/HOTP support
● FIDO2

○ Max number of resident keys
○ HMAC extension for disk encryption
○ Credential management support (credMgmt)
○ Credential protection (credProtect)

● (U2F)
● Open-source firmware
● Upgradable firmware
● Secure element
● Static password
● PGP
● PIV
● Biometrics (fingerprint reader)

○ Max number of fingerprints
● Certifications (FIPS 140-2, NIST SP800-63B, CC EAL)
● Price
● Form factor/design
● Support / Available software and documentation 71

72

USB
Type

NFC Bio Open
source

FIDO2 OTP PGP PIV SE Price
(USD)

Comment

Yubikey 4 A/C No No No No T/H Yes Yes Yes - No FIDO2

Yubikey 5 A/C Yes No No Yes/25 T/H Yes Yes Yes $ 50 No biometrics

Security
Key NFC

A/C Yes No No Yes/25 No No No Yes $ 25 Limited features

Yubikey
Bio

A/C No Yes No Yes/25 No No No Yes $ 90 No NFC, limited
features

Nitrokey 3 A/C Yes No Yes Yes/10 T/H Yes Yes *Yes $ 55 *SE not in use
(2023)

SoloKeys
Solo 2+

A/C Yes No Yes Yes/100 No* No No* No $ 46 Limited features,
no SE, not
production-ready

Google
Titan Key

A/C Yes No No Yes/250 No No No Yes $ 35 Limited features,
limited docs

FIDO2 Certified Authenticator Levels

73

Conclusions

74

Questions to ask yourself

● What use cases (features) do I need?
● What is my threat model ?

○ What happens if my security key is stolen ?
○ Am I able to revoke my security key quickly ?
○ Do I care about hardware attacks ?

75

Conclusions

● Security keys can
○ Improve your security
○ Make you save time, make your life easier

● Always set up a fallback method - don’t get locked out
○ If possible, register 2 security keys

● To choose the right security key for you, think of
○ Features you need
○ Threat model
○ Limitations

● There are multiple ways to achieve the same thing
○ See advanced topics in the bonus slides

● We hope we could answer the questions at the beginning
● Feel free to reach out if you have any questions

76

Thank you

77

Advanced topics

78

HOTP

79

HOTP on Yubikey

80

$ ykman otp hotp <slot number 1|2>

Enter a secret key (base32):
OBUDA53NNZPXO33SNNZWQ33Q

Program a HOTP credential in slot 2? [y/N]: y

Test on https://www.verifyr.com/en/otp/check#hotp

https://www.verifyr.com/en/otp/check#hotp

Challenge response

81

Challenge response

● Generic feature to allow further application using security keys.
● A 20-byte secret key can be programmed in a slot:

82

$ ykman otp chalresp -g 2

Using a randomly generated key (hex):
6d84db776b333d18030e7f03cf892633d106a47a

Program a challenge-response credential in slot 2? [y/N]: y

Challenge response

● The security key will receive a challenge of up to 64 bytes and return a
response

● The response is the SHA1-HMAC (20 bytes) of the challenge with respect to
the programmed key

● This feature was used previously to enable disk encryption in LUKS
○ See for example: yubikey-luks

● Can be used in an application through API

83

$ ykman otp calculate 2
Enter a challenge (hex): 506830776e5f776f726b73686f70
8a2554113d0c1ef90177917910476583abb37c8f

https://github.com/cornelinux/yubikey-luks

PGP

84

Prerequisites

85

$ sudo apt-get install scdaemon

$ gpg --card-status

Reader: Yubico YubiKey OTP FIDO CCID 00 00
Application ID ...: D2760001240102010006054098110000
…

Install smartcard daemon:

Test:

Secret key

86

$ gpg -K

$ gpg --default-new-key-algo "rsa4096/cert,sign"
--quick-generate-key "user@email.com"

List existing secret keys:

Generate a new one:

PGP PIN codes

87

PGP applications has two PIN codes different from FIDO2 mode.

On Yubikey by default it is 123456 and the Admin PIN is 12345678

Add the key to the security key

88

$ gpg -K
/home/user/.gnupg/pubring.kbx

sec rsa4096 2023-11-06 [SC] [expires: 2025-11-05]
 1704FD9D2803731B3F3E1C52CE2B95A5BB368B87
uid [ultimate] user@email.com

Get the key ID

Add the key to the security key

89

$ gpg --edit-key 1234ABC # where 1234ABC is the key ID of your key
gpg> keytocard
Really move the primary key? (y/N) y
Please select where to store the key:
 (1) Signature key
 (3) Authentication key
Your selection? 1
Enter the passphrase of the key
Enter the Admin PIN

Store the private key on the security key:

Keep the public key somewhere.

Sign messages

90

$ echo “Hello” > msg.txt

$ gpg --default-key sylvain@email.com --sign msg.txt

$ gpg --verify secret.txt.gpg

Try signing a message:

Possible applications:

● Sign git commit
● (go)pass encryption key

Sign git commit

91

If you have set-up a GPG key in your
Github account you can configure the url
to fetch your public key in the Yubikey:

https://github.com/<username>.gpg

Configure public key URL

92

$ gpg --card-edit

gpg/card> admin

Admin commands are allowed

gpg/card> url

URL to retrieve public key: https://github.com/<user>.gpg

Fetch public key

93

$ gpg --card-edit

gpg/card> fetch

gpg: requesting key from 'https://github.com/user.gpg'

gpg: key 114312640BB4D65E: public key "user <user@email.com>"
imported

gpg: Total number processed: 1

gpg: imported: 1

Sign git commit

94

$ git config --global user.email "user@email.com"

$ git config --global user.signingkey 37C79B97D4B…

$ git commit -S -m "YOUR_COMMIT_MESSAGE"

$ git cat-file -p HEAD

tree e34999490a93ec82c4c2508d359272ad31d9129a
parent 8c145574d6de3c440a01e79a86e2737b99099788
author user <user@email.com> 1699601993 +0100
committer user <user@email.com> 1699601993 +0100
gpgsig -----BEGIN PGP SIGNATURE-----
…

Use case: PIV smart card
Security key as a PIV smart card

95

PIV smart card use case

● PIV = Personal Identity Verification
○ PIV Interface defined in NIST SP 800-73 standard

● PIV card contains slots
● Each slot can store a certificate and its associated

private key
● Each slot has a different usage

○ Slot 9a: Authentication (system login, SSH, etc.)
○ Slot 9c: Digital signature (emails, documents)
○ Slot 9d: Encryption (emails, documents) - AKA

“Key Management”
○ Slot 9e: Physical access (building doors)
○ etc.

● Yubikey emulates a smart card reader with a card
always inserted

96

PIV smart card use case (continued)

● Also stores values in containers
○ Card holder’s name
○ Facial picture
○ Biometrics
○ etc.

● Containers are accessed by their ID
○ Example: Facial picture = 0x5fc108

● Card is protected with a PIN, a PUK and a Management Key
○ PIN is required for sign/decrypt operations
○ Management key is required for importing certificates and private keys,

setting some values

97

PIV usage - Pivy

● Install “pivy”
○ https://github.com/arekinath/pivy

● Guided install (quick start)

○ Will generate a new key pair and self-signed certificate for the 4 main slots, set PIN, etc.
● Sign something

● Load cert into slot 9a

98

$ pivy-tool setup

$ echo foobar | pivy-tool sign 9a

$ cat cert.der | pivy-tool write-cert 9a

https://github.com/arekinath/pivy

PIV usage - ykman

● Ykman can also be used to manage PIV
● Also available with a GUI: ykman-gui

● Import a private key at a slot

● Import a certificate at a slot

● Store/dump photo on your PIV card

99

$ ykman piv keys import <slot> <private_key_file>

$ ykman piv certificates import <slot> <certificate_file>

$ ykman piv objects import 5fc108 photo.jpg

$ ykman piv objects export 5fc108 out.jpg

SSH with PIV smartcard via PKCS #11

● Install opensc

● Get your SSH public key from slot 9a in OpenSSH format

● Add the public key to the target SSH server’s authorized_keys file
● SSH into the machine, using PKCS#11 library path

○ Path may change, on Ubuntu: /usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

● To make the change persistent, modify ~/.ssh/config and add:

100

$ sudo apt install opensc-pkcs11
$ sudo pacman -S opensc

$ pivy-tool pubkey 9a

Host your_ssh_server_hostname
 PKCS11Provider /usr/lib/opensc-pkcs11.so

$ ssh -I /usr/lib/opensc-pkcs11.so user@host

Other use-cases

● We won’t go into the details of these, but here are a few other use cases
○ Unix account login

■ PAM module for pkcs#11
■ Login to your Linux box using your PIV smart card

○ OpenVPN
■ Connect to your VPN using PIV smart card authentication

○ Wireguard
■ Same as above but with Wireguard

● https://www.procustodibus.com/blog/2023/02/wireguard-yubikey/#piv
-slot

101

https://www.procustodibus.com/blog/2023/02/wireguard-yubikey/#piv-slot
https://www.procustodibus.com/blog/2023/02/wireguard-yubikey/#piv-slot

References

● https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-73-4.pdf
● https://ubuntu.com/server/docs/security-smart-cards
● https://developers.yubico.com/PIV/Guides/SSH_with_PIV_and_PKCS11.html

102

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-73-4.pdf
https://ubuntu.com/server/docs/security-smart-cards
https://developers.yubico.com/PIV/Guides/SSH_with_PIV_and_PKCS11.html

