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Who are we?

● Nils Amiet
○ Security researcher
○ Authentication
○ Data processing at scale
○ Linux enthusiast

● Sylvain Pelissier
○ Security researcher
○ Applied Cryptography
○ Hardware attacks
○ CTF player
○ @ipolit@mastodon.social

●
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Introduction
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Workshop goals

● Why should I use a security key?
● What is a secure key used for?
● Which security key should I use?
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The password problem

● Difficult to remember
● Re-use across services leads to “credential stuffing”
● Phishing
● Computer or password manager breach
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What’s a security key?

● An isolated secure element or 
microcontroller performing only 
Cryptography operations

● Security keys can be used in a 
variety of uses cases to mitigate the 
password problem
○ Let’s go through some of these
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Set-up
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Set-up

● Materials available at: https://t.ly/FeAwy
● A virtual machine is available there:

○ username: user
○ password: changeme

● Slides
● All the commands are in a VM file in folder 

~/workshop or at the link above.
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https://drive.google.com/drive/folders/1_Gc52lRCybhOnre6xuFwXbq2CEq3MaPD?usp=drive_link


Use case: 2FA
Security key as a second factor
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Two-factor authentication (2FA)

● Generally in addition to a password to avoid a single point of failure.
● It can be a SMS on a mobile phone, an authenticator application, a TPM, or a 

security key.
● The advantage of security key is to have a separated device less prone to be 

breached.
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OATH, HOTP, TOTP

● OATH (Initiative for Open Authentication)
○ HOTP: HMAC-based
○ TOTP: Time-based

● A one time code generated by another device.
● Used as a second factor together with a password.
● It is unlikely that both devices will be compromised at the 

same time.
● Recommended Android application: Aegis Authenticator

○ Open-source and easy backups.
● Other solutions: Google Authenticator, FreeOTP, Authy, etc.
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https://getaegis.app/


HOTP: HMAC-Based One-Time Password Algorithm

● Defined in RFC 4226
● Less used in practice
● Both the client and the server share a secret key or seed.
● Server sends a challenge value C (for example a counter)
● Client answer by:

HOTP(Key, C) = Truncate(HMAC-SHA-1(Key, C))

● The result of truncate is a for example a 6-digit number.
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TOTP: Time-Based One-Time Password Algorithm

● Defined in RFC 6238
● Both the client and the server share a secret key or seed.
● Server use as a challenge value T the current time (Unix 

epoch) in steps of 30 seconds.
● Client sends:

TOTP(Key, T) = Truncate(HMAC-SHA-1(Key, T))

● The result of truncate is a 6-digit number.
● Check online: 

https://www.token2.com/site/page/totp-toolset
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https://www.token2.com/site/page/totp-toolset


TOTP with security key

● The advantage of using a security key for TOTP is that the secret key never 
leaves the security key

● The drawback is that if you lose your security key you may be locked out of 
your account

● On Yubikeys you can set-up up to 32 accounts.
● Can be used together with a mobile application (Then secure as the weakest 

link)
● Some software TOTP also exist like : totp-cli
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https://github.com/yitsushi/totp-cli


TOTP with security key

Prerequisites for Yubikeys:

PCSC tools and screenshot:

Install Yubico Authenticator

● Get latest version from 
https://www.yubico.com/products/yubico-authenticator/
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$ sudo apt install pcscd gnome-screenshot

$ tar -xvf yubico-authenticator-latest-linux.tar.gz

$ cd yubico-authenticator-6.3.0-linux/

$ ./authenticator

https://www.yubico.com/products/yubico-authenticator/


TOTP with security key (Arch)

Prerequisites for Yubikeys:

PCSC tools and screenshot:

Install Yubico Authenticator:
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$ sudo pacman -S pcsc-tools gnome-screenshot

$ sudo systemctl enable --now pcscd

$ cd workshop

$ tar -xvf yubico-authenticator-latest-linux.tar.gz

$ cd yubico-authenticator-6.3.0-linux/

$ ./authenticator



TOTP with security key

● Go to 
https://authenticationtest.com/totpChallenge/

● Add an account in authenticator: 
○ Scan QR code
○ Or enter code manually
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https://authenticationtest.com/totpChallenge/


TOTP with security key

● Go to 
https://authenticationtest.com/totpChallenge/

● Add an account in authenticator: 
○ Scan QR code
○ Or enter code manually

● Use the TOTP to login.
● Check that the code changes every 30 seconds
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https://authenticationtest.com/totpChallenge/


Yubikey Manager

Install Yubikey Manager
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$ sudo apt install yubikey-manager

$  ykman info  
Device type: YubiKey 4
Serial number: 5409811
Firmware version: 4.3.4
Enabled USB interfaces: OTP, FIDO, CCID

…



Yubikey Manager

Install Yubikey Manager (Arch)
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$ sudo pacman -S yubikey-manager

$  ykman info  
Device type: YubiKey 4
Serial number: 5409811
Firmware version: 4.3.4
Enabled USB interfaces: OTP, FIDO, CCI



TOTP on the command line

Create TOTP account:
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$ ykman oath accounts add test

Enter a secret key (base32): I65VU7K5ZQL7WB4E

$ ykman oath accounts code
test                     389685
totp@authenticationtest.com  389685

Get TOTP codes:



Your turn now…

● Github
● Gitlab
● Gmail
● YesWeHack
● Wordpress
● X (Twitter)

A complete list of supported services is here: https://www.dongleauth.com/
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https://www.dongleauth.com/


Backup and disaster recovery

Backup your keys ! A mobile app can be a backup of security key.

Be careful of fall-back settings…
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Use case: Passkeys/FIDO2
Security key as a 1st factor
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Passkeys

● A new way to sign in to apps and websites
● Sign in the same way you unlock your device

○ Face scan, fingerprint, screen lock PIN
● The first factor is now an “authenticator”

○ Not a password anymore
○ The authenticator can be a smartphone, a 

laptop, etc.
○ But it can also be a security key
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Passkeys (continued)

● Passkeys are built with FIDO2
○ FIDO2 = WebAuthn + CTAP2
○ WebAuthn: specification for web browsers
○ CTAP2: specification for Client <-> Authenticator communication 

(USB, NFC)
● Web browser must support WebAuthn Javascript API

○ Supported by all major web browsers
● Authenticator must support CTAP2

○ Supported by all “FIDO2-compatible” security keys
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Remember FIDO2?

● Previously: U2F (2014)
○ Designed for 2nd factor only

● Previously: FIDO2 (2019)
○ Passkey was locked to the device it was generated on

● Passkeys (October 2022)
○ Passkey = FIDO2 + More intuitive user experience

● But what’s different/new?
○ Cloud synchronized keys

■ Android: Google Password Manager + 3rd party (14+)
■ iOS: iCloud Keychain + 3rd party (17+)

○ Cross-device authentication (CDA)
○ Third-party passkey providers
○ Strongest attempt so far to achieve large-scale adoption of a 

replacement for passwords
27



How it works (simplified)

● Registration
○ Generate key pair
○ A) Store private key on device (resident credential)

■ Uses space on the device
○ B) Offload storage to website/app

■ Simplified: key is encrypted using master key
■ [-] Cannot do “username-less” scenario
■ [+] Unlimited storage

○ Website stores public key
● Login

○ Generate signature with private key
○ Website verifies signature with public key

28



Passkeys: phishing resistance

● Credentials can only be used with the website they were 
generated for

○ Enforced at the protocol level
● Registration

○ Website URL is computed via browser internal API
○ URL is stored alongside credentials

● Login
○ Website URL is computed via browser internal API
○ Browser asks authenticator if credentials for this URL 

exist
● This completely eliminates phishing attacks

○ Unless browser exploit exists!
● Also: breach resistance… or is it really? :)

○ What about cloud-synchronized passkeys?
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Are passkeys replacing security keys?

● No
● You may not want to sync your passkeys in the cloud

○ Device-bound passkey
○ Keep the passkey on a security key, offline

● You may need Authenticator Assurance Level 3 security (AAL3)
○ https://pages.nist.gov/800-63-3-Implementation-Resources/63B

/AAL/
● It can be used as a backup, in case you lose access to all your other 

passkey devices
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https://pages.nist.gov/800-63-3-Implementation-Resources/63B/AAL/
https://pages.nist.gov/800-63-3-Implementation-Resources/63B/AAL/


Disaster recovery

● Example: Passkey stored on smartphone
● Smartphone becomes unavailable (stolen, lost, broken)
● Are you locked out of your account forever?
● No, fallback method can be used

○ Password + 2nd factor (security key, TOTP, SMS, recovery code, 
etc.)

○ Backup passkey on a security key
○ Cloud-synced passkey with biometrics (test it first!)

● Make sure to setup a fallback method
○ Don’t get locked out
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Device support

● It’s still very new
● Being rolled out to major OSes and web browsers
● https://passkeys.dev/device-support/
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https://passkeys.dev/device-support/


Managing your FIDO2 security key

● Chrome settings
○ Settings > Privacy and security > Security > Manage security keys
○ Direct link: chrome://settings/securityKeys
○ List/delete credentials
○ List/enroll/delete fingerprints
○ Set/change PIN
○ Reset security key

● To set fingerprints, use ctapcli if Chrome doesn’t work 
○ (installs to ~/.cargo/bin)

● Alternative: fido2-token from the “libfido2” package (Ubuntu: fido2-tools)
● Not as intuitive to use

● Yubico tools, such as ykman-gui, are locked to products from that vendor only
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$ cargo install ctap-hid-fido2 --example ctapcli

$ ctapcli bio -h



Managing your FIDO2 security key (continued)
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$ ctapcli info

- versions                           = ["U2F_V2", "FIDO_2_0", "FIDO_2_1_PRE"]

- extensions                         = ["credProtect", "hmac-secret"]

- aaguid(16)                         = 8876631BD4A0427F57730EC71C9E0279

- options                            = [("rk", true), ("up", true), ("plat", 
false), ("credMgmt", true), ("clientPin", false)]

$ ctapcli cred

PIN: 

Enumerate discoverable credentials.

- existing discoverable credentials: 1/49

- rp: (id: webauthn.io, name: test)

  - credential: (id: 6447567A6441, name: test, display_name: test)



References

● https://passkeys.dev/
● https://developer.apple.com/passkeys/
● https://fidoalliance.org/white-paper-multi-device-fido-credentials/
● https://security.googleblog.com/2022/10/SecurityofPasskeysintheGooglePasswordMan

ager.html
● https://web.dev/articles/passkey-registration
● https://www.passkeys.io/
● https://webauthn.me/debugger
● https://www.eff.org/deeplinks/2023/10/what-passkey
● https://www.imperialviolet.org/2023/07/23/u2f-to-passkeys.html
● https://www.imperialviolet.org/2022/09/22/passkeys.html
● https://developers.yubico.com/Passkeys/
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Exercise

● Go to https://WebAuthN.io
● Register
● Authenticate
● Try with

○ 1) Laptop: security key
○ 2) Smartphone: internal passkey
○ 3) Laptop: Cross-device authentication

■ Login to Chrome
■ Turn on bluetooth
■ Login with passkey stored on smartphone, but from laptop
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https://webauthn.io


Your turn now…

● https://passkeys.directory/
● Github
● Google
● Microsoft
● Apple
● Nintendo
● NextCloud (Up to your provider)
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https://passkeys.directory/


Use case: Static password
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Yubikey slots
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$ ykman otp info
Slot 1: programmed
Slot 2: programmed

● There are 2 slots for shared applications (on Yubikey)
○ Yubico OTP
○ HMAC-based OTP (OATH HOTP)
○ Static password
○ Challenge-response (HMAC-SHA1 or Yubico OTP algorithms)



Yubikey slots

● Short touch the Yubikey’s round part, 
it will type the value stored in slot 1 
as a keyboard

● For Raspberry Pi Pico it is the “Boot” 
button

● Long touch (about 3 seconds) will 
type the value in slot 2
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Static password

● Use cases
○ Arbitrary string you type often
○ Passwords on devices where it’s slow to type

■ Netflix on vacation TV
■ Apple TV
■ Game console

● Make sure to set higher intra-character pacing
● If storing passwords

○ Only store a part of the password in the OTP slot
○ Type the rest manually
○ Someone who steals your security key doesn’t get your full password
○ Example: myPa$$word76

■ Type manually: myP
■ Store: a$$word76
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Static password setup (Yubikey)

● By default, can only store modhex data, to be compatible with all keyboard layouts
○ These 16 characters are allowed only: cbdefghijklnrtuv
○ Make sure to pass “-k fr” keyboard layout to enable use of additional characters

● Yubikey 4: max length = 38 modhex characters per OTP slot
● Store secret

● Generate secret

● Print secret
○ Short touch the Yubikey’s round part, it will type the value stored in slot 1 as a keyboard
○ Long touch (about 3 seconds) will type the value in slot 2
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$ ykman otp static -k fr <slot number>

$ ykman otp static --length 24 --generate <slot number>



Intra-character pacing, final Enter keystroke

● On game consoles, the pacing at which keystrokes are typed may be too fast
○ Some keys may not be registered correctly

● You may not want to send a final Enter either
● Change the OTP slot settings:

● Pacing: number of milliseconds between each keystroke (default=0)
○ Possible values: 0, 20, 40, 60

● --no-enter: Do not send an Enter keystroke after slot output (default=type enter)
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$ ykman otp settings --pacing <pacing> --no-enter <slot number>



Use case: 
Sudo with a security key
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Prerequisites

Install libpam-u2f (Ubuntu):
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$ sudo apt-get install libpam-u2f

$ sudo pacman -S pam-u2f

Install libpam-u2f (Arch):



Sudo configuration

Associate the key with your account:

46

$ mkdir -p ~/.config/Yubico

$ pamu2fcfg > ~/.config/Yubico/u2f_keys

Enter PIN for /dev/hidraw2:

$ sudo nano /etc/pam.d/sudo



Sudo configuration

Edit permissions in /etc/pam.d/sudo at the beginning of the file:

required means password AND security key. 

sufficient means password OR key.
47

#%PAM-1.0

auth required pam_u2f.so cue [cue_prompt=Tap your security key]

# Set up user limits from /etc/security/limits.conf.

…



Sudo configuration

Test it works:

Warning when using “required”: if you lose your security key, you can no longer use 
sudo !

Recommended to register multiple security keys in case one is lost with:
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$ sudo echo test

Tap your Yubikey

[sudo] password for user:

test

$ pamu2fcfg -n >> ~/.config/Yubico/u2f_keys



Sudo configuration

Test:

When using “sufficient” it falls back to password if no security key is detected.

49

$ sudo echo test

Tap your Yubikey

test



Use case:
Login to Linux with a security key
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Login configuration

Edit permission in /etc/pam.d/gdm-password (Gnome) or sddm (KDE):

required means passwords AND security key. 

sufficient means password OR key.
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#%PAM-1.0

auth required pam_u2f.so cue [cue_prompt=Tap your security key]

# Set up user limits from /etc/security/limits.conf.

…



Login with security key

Test 1FA
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Login with security key and password

Test 2FA
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Login with security key and PIN

Configuration to request the security key PIN
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$ pamu2fcfg -N > ~/.config/Yubico/u2f_keys

Enter PIN for /dev/hidraw2:



Login with security key and PIN

Test 2FA
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Risk analysis

Sufficient: Add no security, maybe decrease security. Think if someone steal you 
laptop and your key.

Required: Add a second factor for example the PIN. Think of what happen if you 
lose your key.

Warning: It does not configure the TTY terminals ! Once you are ready: 
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#%PAM-1.0

auth required pam_u2f.so cue [cue_prompt=Tap your security key]

$ sudo nano /etc/pam.d/common-auth



Use case: SSH over FIDO2
Your SSH key on a security key
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SSH use case

● Requires OpenSSH 8.2 or later (released Feb 2020)
● Generate a portable SSH key to be stored on a FIDO2 security key:

● This will create
○ ~/.ssh/id_ecdsa_sk (private key handle*)
○ ~/.ssh/id_ecdsa_sk.pub (public key)

● The private key handle* cannot be used by itself, it still requires the 
security key to be present
○ It’s a pointer to the actual private key, stored on the security key
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$ ssh-keygen -t ecdsa-sk -O resident



SSH use case (continued)

● Later, on another computer, load the resident key:
● 2 options

● Note: option A requires ssh-agent running and setup
● Then SSH into your machine as usual

For A)

For B)
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$ ssh-add -K

$ ssh-keygen -K

$ ssh user@host

A) Load key into ssh-agent

B) Save key to file on disk

—>

—>

$ ssh user@host -i ~/.ssh/id_ecdsa_sk



Use cases

● SSH authentication
● Sign git commits with your SSH key (yes, SSH key, not PGP key)

○ https://docs.github.com/en/authentication/managing-commit-signature-verifi
cation/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
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https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key
https://docs.github.com/en/authentication/managing-commit-signature-verification/telling-git-about-your-signing-key#telling-git-about-your-ssh-key


Exercise

● The following SSH server can be used for this exercise:
○ Host: hostname
○ Username: ph0wn
○ Password: ph0wn-security-key-workshop
○ Port: 22

● Generate an SSH key on your FIDO2 security key
● Add the public key to the SSH server’s authorized_keys file

● From your own machine, SSH into the server with pubkey authentication

● Check that the SSH key on the security key is really portable
○ From another machine, SSH into the server with your security key
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$ ssh-copy-id -i ~/.ssh/id_ecdsa_sk.pub username@hostname

$ ssh username@hostname

$ ssh-keygen -t ecdsa-sk -O resident

    $ ssh-add -K

or  $ ssh-keygen -K

Reminder:



Disk encryption with FIDO2
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Disk encryption

Requirements:

● FIDO2 security key with 'hmac-secret' extension
● Recent OS

Prerequisites:

Format disk:

63

$ sudo apt install cryptsetup

$ sudo cryptsetup luksFormat /dev/sdb

$ sudo cryptsetup open /dev/sdb encrypted

$ sudo mkfs.ext4 /dev/mapper/encrypted

$ sudo umount /media/user/<disk-id>

$ sudo cryptsetup close encrypted



Partition encryption
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$ sudo systemd-cryptenroll --fido2-device=auto --wipe-slot=all /dev/sdb

$ sudo cryptsetup open --token-only /dev/sdb encrypted

Enroll security key:

Add to the boot: edit /etc/crypttab

# <target name> <source device>     <key file>  <options>

encrypted /dev/sdb - fido2-device=auto

Open partition with the security key:



Boot
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Comparison of security keys
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Hardware 

67

Microcontroller
● General purpose CPU
● Not design for security
● No HW attacks protection

Secure element
● Limited Functionality
● Isolation and designed for security
● May have an Evaluation Assurance 

Level (EAL)



Is the secure element used ? 
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Hardware Comparison

● Main possibilities:
○ Yubikey 5 : Infineon SLE78CLUFX5000 secure element (CC EAL6+)
○ Google Titan/Feitian Key: NXP A7005 secure element (CC EAL5+)
○ Ledger Nano X: ST31H320 or ST33J2M0 secure element (CC EAL5+)
○ Ledger Nano S: ST31 (CC EAL5+)
○ Nitrokey 3: Warning: keys stored in internal flash at the moment (Secure 

element not used) 
○ Solokeys Solo 1: STM32L432 microcontroller
○ Solokeys Solo 2: NXP LPC55S69 microcontroller
○ Token2: Unknown hardware
○ TrustKey: eWBM MS500 microcontroller
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More on FIDO2 hardware

70



Features to look for

● USB-C or USB-A
● NFC support
● TOTP/HOTP support
● FIDO2

○ Max number of resident keys
○ HMAC extension for disk encryption
○ Credential management support (credMgmt)
○ Credential protection (credProtect)

● (U2F)
● Open-source firmware
● Upgradable firmware
● Secure element
● Static password
● PGP
● PIV
● Biometrics (fingerprint reader)

○ Max number of fingerprints
● Certifications (FIPS 140-2, NIST SP800-63B, CC EAL)
● Price
● Form factor/design
● Support / Available software and documentation 71
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USB
Type

NFC Bio Open 
source

FIDO2 OTP PGP PIV SE Price
(USD)

Comment

Yubikey 4 A/C No No No No T/H Yes Yes Yes - No FIDO2

Yubikey 5 A/C Yes No No Yes/25 T/H Yes Yes Yes $ 50 No biometrics

Security 
Key NFC

A/C Yes No No Yes/25 No No No Yes $ 25 Limited features

Yubikey 
Bio

A/C No Yes No Yes/25 No No No Yes $ 90 No NFC, limited 
features

Nitrokey 3 A/C Yes No Yes Yes/10 T/H Yes Yes *Yes $ 55 *SE not in use 
(2023)

SoloKeys 
Solo 2+

A/C Yes No Yes Yes/100 No* No No* No $ 46 Limited features, 
no SE, not 
production-ready

Google 
Titan Key

A/C Yes No No Yes/250 No No No Yes $ 35 Limited features, 
limited docs



FIDO2 Certified Authenticator Levels
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Conclusions
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Questions to ask yourself

● What use cases (features) do I need?
● What is my threat model ?

○ What happens if my security key is stolen ?
○ Am I able to revoke my security key quickly ?
○ Do I care about hardware attacks ?
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Conclusions

● Security keys can
○ Improve your security
○ Make you save time, make your life easier

● Always set up a fallback method - don’t get locked out
○ If possible, register 2 security keys

● To choose the right security key for you, think of
○ Features you need
○ Threat model
○ Limitations

● There are multiple ways to achieve the same thing
○ See advanced topics in the bonus slides

● We hope we could answer the questions at the beginning
● Feel free to reach out if you have any questions

76



Thank you
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Advanced topics
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HOTP
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HOTP on Yubikey
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$ ykman otp hotp <slot number 1|2>

Enter a secret key (base32): 
OBUDA53NNZPXO33SNNZWQ33Q

Program a HOTP credential in slot 2? [y/N]: y

Test on https://www.verifyr.com/en/otp/check#hotp

https://www.verifyr.com/en/otp/check#hotp


Challenge response
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Challenge response

● Generic feature to allow further application using security keys.
● A 20-byte secret key can be programmed in a slot:

82

$ ykman otp chalresp -g 2

Using a randomly generated key (hex): 
6d84db776b333d18030e7f03cf892633d106a47a

Program a challenge-response credential in slot 2? [y/N]: y



Challenge response

● The security key will receive a challenge of up to 64 bytes and return a 
response

● The response is the SHA1-HMAC (20 bytes) of the challenge with respect to 
the programmed key

● This feature was used previously to enable disk encryption in LUKS
○ See for example: yubikey-luks

● Can be used in an application through API

83

$ ykman otp calculate 2
Enter a challenge (hex): 506830776e5f776f726b73686f70
8a2554113d0c1ef90177917910476583abb37c8f

https://github.com/cornelinux/yubikey-luks


PGP
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Prerequisites

85

$ sudo apt-get install scdaemon

$ gpg --card-status

Reader ...........: Yubico YubiKey OTP FIDO CCID 00 00
Application ID ...: D2760001240102010006054098110000
…

Install smartcard daemon:

Test:



Secret key
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$ gpg -K

$ gpg --default-new-key-algo "rsa4096/cert,sign" 
--quick-generate-key "user@email.com"

List existing secret keys:

Generate a new one:



PGP PIN codes
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PGP applications has two PIN codes different from FIDO2 mode.

On Yubikey by default it is 123456 and the Admin PIN is 12345678



Add the key to the security key
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$ gpg -K
/home/user/.gnupg/pubring.kbx
--------------------------------
sec   rsa4096 2023-11-06 [SC] [expires: 2025-11-05]
  1704FD9D2803731B3F3E1C52CE2B95A5BB368B87
uid       [ultimate] user@email.com

Get the key ID



Add the key to the security key
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$ gpg --edit-key 1234ABC # where 1234ABC is the key ID of your key
gpg> keytocard
Really move the primary key? (y/N) y
Please select where to store the key:
   (1) Signature key
   (3) Authentication key
Your selection? 1
# Enter the passphrase of the key
# Enter the Admin PIN

Store the private key on the security key:

Keep the public key somewhere.



Sign messages
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$ echo “Hello” > msg.txt

$ gpg --default-key sylvain@email.com --sign msg.txt

$ gpg --verify secret.txt.gpg

Try signing a message:

Possible applications:

● Sign git commit
● (go)pass encryption key



Sign git commit
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If you have set-up a GPG key in your 
Github account you can configure the url 
to fetch your public key in the Yubikey:

https://github.com/<username>.gpg



Configure public key URL
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$ gpg --card-edit

gpg/card> admin

Admin commands are allowed

gpg/card> url

URL to retrieve public key: https://github.com/<user>.gpg



Fetch public key
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$ gpg --card-edit

gpg/card> fetch

gpg: requesting key from 'https://github.com/user.gpg'

gpg: key 114312640BB4D65E: public key "user <user@email.com>" 
imported

gpg: Total number processed: 1

gpg:           imported: 1



Sign git commit
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$ git config --global user.email "user@email.com"

$ git config --global user.signingkey 37C79B97D4B…

$ git commit -S -m "YOUR_COMMIT_MESSAGE"

$ git cat-file -p HEAD

tree e34999490a93ec82c4c2508d359272ad31d9129a
parent 8c145574d6de3c440a01e79a86e2737b99099788
author user <user@email.com> 1699601993 +0100
committer user <user@email.com> 1699601993 +0100
gpgsig -----BEGIN PGP SIGNATURE-----
…



Use case: PIV smart card
Security key as a PIV smart card
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PIV smart card use case

● PIV = Personal Identity Verification
○ PIV Interface defined in NIST SP 800-73 standard

● PIV card contains slots
● Each slot can store a certificate and its associated 

private key
● Each slot has a different usage

○ Slot 9a: Authentication (system login, SSH, etc.)
○ Slot 9c: Digital signature (emails, documents)
○ Slot 9d: Encryption (emails, documents) - AKA 

“Key Management”
○ Slot 9e: Physical access (building doors)
○ etc.

● Yubikey emulates a smart card reader with a card 
always inserted
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PIV smart card use case (continued)

● Also stores values in containers
○ Card holder’s name
○ Facial picture
○ Biometrics
○ etc.

● Containers are accessed by their ID
○ Example: Facial picture = 0x5fc108

● Card is protected with a PIN, a PUK and a Management Key
○ PIN is required for sign/decrypt operations
○ Management key is required for importing certificates and private keys, 

setting some values
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PIV usage - Pivy

● Install “pivy”
○ https://github.com/arekinath/pivy

● Guided install (quick start)

○ Will generate a new key pair and self-signed certificate for the 4 main slots, set PIN, etc.
● Sign something

● Load cert into slot 9a
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$ pivy-tool setup

$ echo foobar | pivy-tool sign 9a

$ cat cert.der | pivy-tool write-cert 9a

https://github.com/arekinath/pivy


PIV usage - ykman

● Ykman can also be used to manage PIV
● Also available with a GUI: ykman-gui

● Import a private key at a slot

● Import a certificate at a slot

● Store/dump photo on your PIV card
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$ ykman piv keys import <slot> <private_key_file>

$ ykman piv certificates import <slot> <certificate_file>

$ ykman piv objects import 5fc108 photo.jpg

$ ykman piv objects export 5fc108 out.jpg



SSH with PIV smartcard via PKCS #11

● Install opensc

● Get your SSH public key from slot 9a in OpenSSH format

● Add the public key to the target SSH server’s authorized_keys file
● SSH into the machine, using PKCS#11 library path

○ Path may change, on Ubuntu: /usr/lib/x86_64-linux-gnu/opensc-pkcs11.so

● To make the change persistent, modify ~/.ssh/config and add:
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$ sudo apt install opensc-pkcs11
$ sudo pacman -S opensc

$ pivy-tool pubkey 9a

Host your_ssh_server_hostname
  PKCS11Provider /usr/lib/opensc-pkcs11.so

$ ssh -I /usr/lib/opensc-pkcs11.so user@host



Other use-cases

● We won’t go into the details of these, but here are a few other use cases
○ Unix account login

■ PAM module for pkcs#11
■ Login to your Linux box using your PIV smart card

○ OpenVPN
■ Connect to your VPN using PIV smart card authentication

○ Wireguard
■ Same as above but with Wireguard

● https://www.procustodibus.com/blog/2023/02/wireguard-yubikey/#piv
-slot
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https://www.procustodibus.com/blog/2023/02/wireguard-yubikey/#piv-slot
https://www.procustodibus.com/blog/2023/02/wireguard-yubikey/#piv-slot
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● https://ubuntu.com/server/docs/security-smart-cards
● https://developers.yubico.com/PIV/Guides/SSH_with_PIV_and_PKCS11.html
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